1 |
SUNG H, FERLAY J, SIEGEL R L, et al.. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J. Clin., 2021, 71(3): 209-249.
|
2 |
JOLLY P, ESTRELA P, LADOMERY M. Oligonucleotide-based systems: DNA, microRNAs, DNA/RNA aptamers[J]. Essays Biochem., 2016, 60(1): 27-35.
|
3 |
ALHAMADANI F, ZHANG K, PARIKH R, et al.. Adverse drug reactions and toxicity of the food and drug administration-approved antisense oligonucleotide drugs[J]. Drug Metab. Dispos., 2022, 50(6): 879-887.
|
4 |
BLOKPOEL F L A, CHAN S Y, VAZQUEZ REINA S, et al.. Rapidly transducing and spatially localized magnetofection using peptide-mediated non-viral gene delivery based on iron oxide nanoparticles[J]. ACS Appl. Nano Mater., 2021, 4(1): 167-181.
|
5 |
PEERY R C, LIU J Y, ZHANG J T. Targeting survivin for therapeutic discovery: past, present, and future promises[J]. Drug Discov. Today, 2017, 22(10): 1466-1477.
|
6 |
SHOJAEI F, YAZDANI-NAFCHI F, BANITALEBI-DEHKORDI M, et al.. Trace of survivin in cancer[J]. Eur. J. Cancer Prev., 2019, 28(4): 365-372.
|
7 |
LI Y, LU W, YANG J, et al.. Survivin as a biological biomarker for diagnosis and therapy[J]. Expert Opin. Biol. Ther., 2021, 21(11): 1429-1441.
|
8 |
MOBAHAT M, NARENDRAN A, RIABOWOL K. Survivin as a preferential target for cancer therapy[J]. Int. J. Mol. Sci., 2014, 15(2): 2494-2516.
|
9 |
TAMM I, WANG Y, SAUSVILLE E, et al.. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs[J]. Cancer Res., 1998, 58(23): 5315-5320.
|
10 |
RAMASAMY T, RUTTALA H B, MUNUSAMY S, et al.. Nano drug delivery systems for antisense oligonucleotides (ASO) therapeutics[J]. J. Control. Release, 2022, 352: 861-878.
|
11 |
MANTZ A, PANNIER A K. Biomaterial substrate modifications that influence cell-material interactions to prime cellular responses to nonviral gene delivery[J]. Exp. Biol. Med., 2019, 244(2): 100-113.
|
12 |
SHIM G, KIM D, LE Q V, et al.. Nonviral delivery systems for cancer gene therapy: strategies and challenges[J]. Curr. Gene Ther., 2018, 18(1): 3-20.
|
13 |
JIAO Y, XIA Z L, ZE L J, et al.. Research progress of nucleic acid delivery vectors for gene therapy[J/OL]. Biomed. Microdevices, 2020, 22(1): 16[2022-10-10]. .
|
14 |
ZU H, GAO D. Non-viral vectors in gene therapy: recent development, challenges, and prospects[J/OL]. AAPS J., 2021, 23(4): 78[2022-10-13]. .
|
15 |
WEI B, JIN X, WANG Q, et al. Synthesis of carbon coated iron nitride nanoparticles by using microwave plasma technique[J/OL]. Mater. Res. Express, 2020, 7(9): 096103[2021-05-06]. .
|
16 |
WU Z, DENG W, ZHOU W, et al.. Novel magnetic polysaccharide/graphene oxide @Fe3O4 gel beads for adsorbing heavy metal ions[J]. Carbohydr. Polym., 2019, 216: 119-128.
|
17 |
LI J, WANG M, JIA R, et al.. Graphene-coated iron nitride streptavidin magnetic beads: preparation and application in SARS-CoV-2 enrichment[J/OL]. Magnetochemistry, 2022: 8[2022-10-12]. .
|
18 |
XU Z, LEI X, TU Y, et al.. Dynamic cooperation of hydrogen binding and π stacking in ssDNA adsorption on graphene oxide[J]. Chemistry, 2017, 23(53): 13100-13104.
|
19 |
LEI X, MA H, FANG H. Length feature of ssDNA adsorption onto graphene oxide with both large unoxidized and oxidized regions[J]. Nanoscale, 2020, 12(12): 6699-6707.
|
20 |
ZENG S, CHEN L, WANG Y, et al.. Exploration on the mechanism of DNA adsorption on graphene and graphene oxide via molecular simulations[J/OL]. J. Phys. D Appl. Phys., 2015, 48(27):275402[2021-11-10]. .
|
21 |
IWE I, LI Z, HUANG J. Graphene oxide and enzyme-assisted dual-cycling amplification method for sensitive fluorometric determination of DNA[J/OL]. Mikrochim. Acta, 2019, 186(11): 716[2023-01-11]. .
|
22 |
JEONG S, KIM D M, AN S Y, et al.. Fluorometric detection of influenza viral RNA using graphene oxide[J]. Anal. Biochem., 2018, 561-562: 66-69.
|
23 |
ZHENG P, WU N. Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review[J]. Chem. Asian J., 2017, 12(18): 2343-2353.
|
24 |
LIU B, HUANG P J, KELLY E Y, et al.. Graphene oxide surface blocking agents can increase the DNA biosensor sensitivity[J]. Biotechnol. J., 2016, 11(6): 780-787.
|
25 |
PAUL T, BERA S C, AGNIHOTRI N, et al.. Single-molecule FRET studies of the hybridization mechanism during noncovalent adsorption and desorption of DNA on graphene oxide[J]. J. Phys. Chem. B, 2016, 120(45): 11628-11636.
|
26 |
LIANG L, SHEN X, ZHOU M, et al.. Theoretical evaluation of potential cytotoxicity of graphene quantum dot to adsorbed DNA[J/OL]. Materials, 2022, 15(21): 7435[2020-12-12]. .
|
27 |
MA Y, WANG J, WU J, et al.. Meta-analysis of cellular toxicity for graphene via data-mining the literature and machine learning[J/OL]. Sci. Total Environ., 2021, 793: 148532[2022-10-12]. .
|
28 |
SONG S, SHEN H, WANG Y, et al.. Biomedical application of graphene: from drug delivery, tumor therapy, to theranostics[J/OL]. Colloids Surf. B Biointerfaces, 2020, 185: 110596[2023-04-11]. .
|
29 |
SHIBATA M, KANETAKA H, FURUYA M, et al.. Cytotoxicity evaluation of iron nitride nanoparticles for biomedical applications[J]. J. Biomed. Mater. Res. A, 2021, 109(10): 1784-1791.
|
30 |
刘庆祖, 刘建恒, 王润生, 等. 聚乙二醇化锌铁氧磁性纳米颗粒对咪喹莫特的载药性能及细胞毒性研究[J]. 解放军医学院学报, 2021, 42(4): 444-450.
|
31 |
MATZURA O, WENNBORG A. RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows[J]. Comput. Appl. Biosci., 1996, 12(3): 247-249.
|
32 |
OLIE R A, SIMÕES-WÜST A P, BAUMANN B, et al.. A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy[J]. Cancer Res., 2000, 60(11): 2805-2809.
|
33 |
LIANG T, LI J, LIU X, et al.. Preparation of CD3 antibody-conjugated, graphene oxide coated iron nitride magnetic beads and its preliminary application in T cell separation[J/OL]. Magnetochemistry, 2021: 7050058[2021-12-19]. .
|
34 |
FERENCHAK K, DEITCH I, HUCKFELDT R. Antisense oligonucleotide therapy for ophthalmic conditions[J]. Semin. Ophthalmol., 2021, 36(5-6): 452-457.
|
35 |
GHEIBI-HAYAT S M, JAMIALAHMADI K. Antisense oligonucleotide (AS-ODN) technology: principle, mechanism and challenges[J]. Biotechnol. Appl. Biochem., 2021, 68(5): 1086-1094.
|
36 |
梁超, 徐玲, 隋雪梅. 联合运用Survivin和VEGF反义寡核苷酸对裸鼠人肺腺癌A549移植瘤的生长抑制作用[J]. 第三军医大学学报, 2013, 35(24): 2643-2647.
|
37 |
ERBA H P, SAYAR H, JUCKETT M, et al.. Safety and pharmacokinetics of the antisense oligonucleotide (ASO) LY2181308 as a single-agent or in combination with idarubicin and cytarabine in patients with refractory or relapsed acute myeloid leukemia (AML)[J]. Invest. New Drugs, 2013, 31(4): 1023-1034.
|
38 |
CARRASCO R A, STAMM N B, MARCUSSON E, et al.. Antisense inhibition of survivin expression as a cancer therapeutic[J]. Mol. Cancer Ther., 2011, 10(2): 221-232.
|
39 |
ROBERTS T C, LANGER R, WOOD M J A. Advances in oligonucleotide drug delivery[J]. Nat. Rev. Drug Discov., 2020, 19(10): 673-694.
|