生物技术进展 ›› 2023, Vol. 13 ›› Issue (5): 718-724.DOI: 10.19586/j.2095-2341.2023.0036
收稿日期:
2023-03-24
接受日期:
2023-07-25
出版日期:
2023-09-25
发布日期:
2023-10-10
通讯作者:
吴雄飞
作者简介:
张明娇 E-mail: 2296012678@qq.com;
基金资助:
Mingjiao ZHANG(), Jiefu ZHU, Xiongfei WU()
Received:
2023-03-24
Accepted:
2023-07-25
Online:
2023-09-25
Published:
2023-10-10
Contact:
Xiongfei WU
摘要:
顺铂作为干预细胞周期的非特异性药物,广泛应用于临床抗肿瘤治疗中,但顺铂可诱导肾细胞死亡,损害肾功能。调节性细胞死亡(regulated all death, RCD)是指具有明确病理机制的受控细胞程序性死亡的过程。近年来,对于各种类型急性肾损伤(acute kidney injury, AKI)发病机制相关的细胞死亡方式研究较多,但细胞死亡在顺铂诱导的肾损伤中的作用及机制研究仍存在空缺。因此,全面了解顺铂诱导的肾毒性中细胞死亡的机制可能会为顺铂诱导的肾病提供新的治疗靶点。综述了顺铂诱导的肾损伤中的细胞死亡方式,包括细胞凋亡、坏死性凋亡、焦亡和铁死亡,以期为在肿瘤治疗中制定降低肾损伤的顺铂用药方案提供参考。
中图分类号:
张明娇, 朱杰夫, 吴雄飞. 顺铂诱导的肾损伤中的细胞死亡[J]. 生物技术进展, 2023, 13(5): 718-724.
Mingjiao ZHANG, Jiefu ZHU, Xiongfei WU. Cell Death in Cisplatin-induced Kidney Injury[J]. Current Biotechnology, 2023, 13(5): 718-724.
RCD方式 | 作用 | 相关分子/机制 | 干预 | 治疗方案 | 参考文献 |
---|---|---|---|---|---|
细胞凋亡 | 抑制 | ERK1/2 | Panduratin A | 靶向抑制ERK1/2 | [ |
细胞凋亡 | 抑制 | RCAN1/JNK/Mff | RCAN1条件敲除 | 靶向抑制RCAN1 | [ |
细胞凋亡 | 抑制 | TAK1/JNK | TAK1 敲除 | 靶向抑制TAK1 | [ |
细胞凋亡 | 抑制 | AMPK/p53/Bax | AMPK选择性抑制剂 | 靶向抑制AMPK | [ |
细胞凋亡 | 抑制 | Sirt-1/p53/Bax | 奎那克林 | 靶向激活Sirt-1 | [ |
细胞凋亡 | 促进 | Sirt-3/Caspase-3 | Sirt-3敲除 | 靶向激活Sirt-3 | [ |
细胞凋亡 | 促进/抑制 | Nrf2、 HO-1、 Bcl-2、 Bax | Sirt-5 siRNA/过表达 | 靶向激活Sirt-5 | [ |
坏死性凋亡 | 抑制 | RIPK3 | RIPK3抑制剂 | 靶向抑制RIPK3 | [ |
坏死性凋亡 | 抑制 | Smad3 | Smad3敲除 | 靶向抑制Smad3 | [ |
坏死性凋亡 | 抑制 | Caspase-3、 JNK/ERK/p38 | 坏死抑素 | 应用坏死抑素 | [ |
细胞凋亡、坏死性凋亡、铁死亡 | 促进/抑制 | Rheb1 | Rheb1敲除/Tsc 1单倍体 | 靶向激活Rheb1 | [ |
焦亡 | 抑制 | GSDMD/IL-18 | GSDMD敲除 | 靶向抑制GSDMD | [ |
焦亡 | 抑制 | NF-κB/NLRP3/Caspase-1/GSDMD | VDR激动剂 | 激动VDR | [ |
铁死亡 | 抑制 | GPX4 | VDR激动剂 | 激动VDR | [ |
铁死亡 | 促进 | Nrf2 | Nrf2敲除 | 靶向激活Nrf2 | [ |
细胞凋亡 | 抑制 | Caspase-3 | Dpep1敲除 | 靶向抑制Dpep1 | [ |
铁死亡 | 抑制 促进 | 脂质过氧化较少 | Dpep1敲除 | 靶向抑制Dpep1 | [ |
铁死亡 | 脂质过氧化增加 | Chmp1a敲除 | 靶向激活Chmp1a | [ | |
铁死亡 | 抑制 | FXR | FXR激动剂 | 靶向激活FXR | [ |
铁死亡 | 抑制 | Cx43 | Cx43沉默/Cx43抑制剂 | 靶向抑制Cx43 | [ |
铁死亡 | 抑制 | GPX4 | TDN | 应用TDN | [ |
表1 CDDP诱导肾损伤中的RCD
Table 1 RCD in CDDP-induced kidney injury
RCD方式 | 作用 | 相关分子/机制 | 干预 | 治疗方案 | 参考文献 |
---|---|---|---|---|---|
细胞凋亡 | 抑制 | ERK1/2 | Panduratin A | 靶向抑制ERK1/2 | [ |
细胞凋亡 | 抑制 | RCAN1/JNK/Mff | RCAN1条件敲除 | 靶向抑制RCAN1 | [ |
细胞凋亡 | 抑制 | TAK1/JNK | TAK1 敲除 | 靶向抑制TAK1 | [ |
细胞凋亡 | 抑制 | AMPK/p53/Bax | AMPK选择性抑制剂 | 靶向抑制AMPK | [ |
细胞凋亡 | 抑制 | Sirt-1/p53/Bax | 奎那克林 | 靶向激活Sirt-1 | [ |
细胞凋亡 | 促进 | Sirt-3/Caspase-3 | Sirt-3敲除 | 靶向激活Sirt-3 | [ |
细胞凋亡 | 促进/抑制 | Nrf2、 HO-1、 Bcl-2、 Bax | Sirt-5 siRNA/过表达 | 靶向激活Sirt-5 | [ |
坏死性凋亡 | 抑制 | RIPK3 | RIPK3抑制剂 | 靶向抑制RIPK3 | [ |
坏死性凋亡 | 抑制 | Smad3 | Smad3敲除 | 靶向抑制Smad3 | [ |
坏死性凋亡 | 抑制 | Caspase-3、 JNK/ERK/p38 | 坏死抑素 | 应用坏死抑素 | [ |
细胞凋亡、坏死性凋亡、铁死亡 | 促进/抑制 | Rheb1 | Rheb1敲除/Tsc 1单倍体 | 靶向激活Rheb1 | [ |
焦亡 | 抑制 | GSDMD/IL-18 | GSDMD敲除 | 靶向抑制GSDMD | [ |
焦亡 | 抑制 | NF-κB/NLRP3/Caspase-1/GSDMD | VDR激动剂 | 激动VDR | [ |
铁死亡 | 抑制 | GPX4 | VDR激动剂 | 激动VDR | [ |
铁死亡 | 促进 | Nrf2 | Nrf2敲除 | 靶向激活Nrf2 | [ |
细胞凋亡 | 抑制 | Caspase-3 | Dpep1敲除 | 靶向抑制Dpep1 | [ |
铁死亡 | 抑制 促进 | 脂质过氧化较少 | Dpep1敲除 | 靶向抑制Dpep1 | [ |
铁死亡 | 脂质过氧化增加 | Chmp1a敲除 | 靶向激活Chmp1a | [ | |
铁死亡 | 抑制 | FXR | FXR激动剂 | 靶向激活FXR | [ |
铁死亡 | 抑制 | Cx43 | Cx43沉默/Cx43抑制剂 | 靶向抑制Cx43 | [ |
铁死亡 | 抑制 | GPX4 | TDN | 应用TDN | [ |
1 | BASU A, KRISHNAMURTHY S. Cellular responses to Cisplatin-induced DNA damage[J/OL]. J. Nucleic Acids, 2010, 2010: 201367[2023-3-24]. . |
2 | COURJAULT-GAUTIER F, LE GRIMELLEC C, GIOCONDI M C, et al.. Modulation of sodium-coupled uptake and membrane fluidity by cisplatin in renal proximal tubular cells in primary culture and brush-border membrane vesicles[J]. Kidney Int., 1995, 47(4): 1048-1056. |
3 | IQBAL M O, SIAL A S, AKHTAR I, et al.. The nephroprotective effects of Daucus carota and Eclipta prostrata against cisplatin-induced nephrotoxicity in rats[J]. Bioengineered, 2021, 12(2): 12702-12721. |
4 | VOLOVAT S, APETRII M, STEFAN A, et al.. Cisplatin and AKI: an ongoing battle with new perspectives-a narrative review[J]. Int. Urol. Nephrol., 2023, 55(5): 1205-1209. |
5 | DELRE D P, AMGALAN D, LINKERMANN A, et al.. Fundamental mechanisms of regulated cell death and implications for heart disease[J]. Physiol. Rev., 2019, 99(4): 1765-1817. |
6 | FUCHS Y, STELLER H. Programmed cell death in animal development and disease[J]. Cell, 2011, 147(4): 742-758. |
7 | FAN T J, HAN L H, CONG R S, et al.. Caspase family proteases and apoptosis[J]. Acta Biochim. Biophys. Sin., 2005, 37(11): 719-727. |
8 | GREEN D R. The mitochondrial pathway of apoptosis: Part I: MOMP and beyond[J/OL]. Cold Spring Harb. Perspect. Biol., 2022, 14(5): a041038[2023-03-24]. . |
9 | TANZER M C, FRAUENSTEIN A, STAFFORD C A, et al.. Quantitative and dynamic catalogs of proteins released during apoptotic and necroptotic cell death[J]. Cell Rep., 2020, 30(4): 1260-1270. |
10 | LIU X, KIM C N, YANG J, et al.. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome C[J]. Cell, 1996, 86(1): 147-157. |
11 | GON S, GATANAGA T, SENDO F. Involvement of two types of TNF receptor in TNF-alpha induced neutrophil apoptosis[J]. Microbiol. Immunol., 1996, 40(6): 463-465. |
12 | SCHNEIDER P, BODMER J L, HOLLER N, et al.. Characterization of fas (apo-1, CD95)-fas ligand interaction[J]. J. Biol. Chem., 1997, 272(30): 18827-18833. |
13 | PAN G, O'ROURKE K, CHINNAIYAN A M, et al.. The receptor for the cytotoxic ligand TRAIL[J]. Science, 1997, 276(5309): 111-113. |
14 | TCHIKOV V, SCHÜTZE S. Immunomagnetic isolation of tumor necrosis factor receptosomes[J]. Methods Enzymol., 2008, 442: 101-123. |
15 | SHIRLEY S, MICHEAU O. Targeting c-FLIP in cancer[J]. Cancer Lett., 2013, 332(2): 141-150. |
16 | YUAN S, AKEY C W. Apoptosome structure, assembly, and procaspase activation[J]. Structure, 2013, 21(4): 501-515. |
17 | THONGNUANJAN P, SOODVILAI S, FONGSUPA S, et al.. Panduratin A derivative protects against cisplatin-induced apoptosis of renal proximal tubular cells and kidney injury in mice[J/OL]. Molecules, 2021, 26(21): 6642[2023-03-24]. . |
18 | XIAO J J, LIU Q, LI Y, et al.. Regulator of calcineurin 1 deletion attenuates mitochondrial dysfunction and apoptosis in acute kidney injury through JNK/Mff signaling pathway[J/OL]. Cell Death Dis., 2022, 13(9): 774[2023-03-24]. . |
19 | ZHOU J, AN C, JIN X, et al.. TAK1 deficiency attenuates cisplatin-induced acute kidney injury[J]. Am. J. Physiol. Renal Physiol., 2020, 318(1): 209-215. |
20 | JIN X, AN C, JIAO B, et al.. AMP-activated protein kinase contributes to cisplatin-induced renal epithelial cell apoptosis and acute kidney injury[J]. Am. J. Physiol. Renal Physiol., 2020, 319(6): 1073-1080. |
21 | FABO EL-MAGD N, EBRAHIM HALI, EL-SHERBINY M, et al.. Quinacrine ameliorates cisplatin-induced renal toxicity via modulation of sirtuin-1 pathway[J/OL]. Int. J. Mol. Sci., 2021, 22(19): 10660[2023-03-24]. . |
22 | KIM D, PARK W, LEE S, et al.. Absence of Sirt3 aggravates cisplatin nephrotoxicity via enhanced renal tubular apoptosis and inflammation[J]. Mol. Med. Rep., 2018, 18(4): 3665-3672. |
23 | LI W, YANG Y, LI Y, et al.. Sirt5 attenuates cisplatin-induced acute kidney injury through regulation of Nrf2/HO-1 and bcl-2[J/OL]. Biomed. Res. Int., 2019, 2019: 4745132[2023-03-24]. . |
24 | HE X Y, WANG F, SUO X G, et al.. Compound-42 alleviates acute kidney injury by targeting RIPK3-mediated necroptosis[J]. Br. J. Pharmacol., 2023, 180(20): 2641-2660. |
25 | YANG Q, GAO L, HU X W, et al.. Smad3-targeted therapy protects against cisplatin-induced AKI by attenuating programmed cell death and inflammation via a NOX4-dependent mechanism[J]. Kidney Dis., 2021, 7(5): 372-390. |
26 | LEE D, YAMABE N, LEE H, et al.. Necrostatins regulate apoptosis, necroptosis, and inflammation in cisplatin-induced nephrotoxicity in LLC-PK1 cells[J/OL]. Bioorg. Med. Chem. Lett., 2021, 48: 128256[2023-03-24]. . |
27 | LU Q, WANG M, GUI Y, et al.. Rheb1 protects against cisplatin-induced tubular cell death and acute kidney injury via maintaining mitochondrial homeostasis[J/OL]. Cell Death Dis., 2020, 11(5): 364[2023-03-24]. . |
28 | MIAO N, YIN F, XIE H, et al.. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury[J]. Kidney Int., 2019, 96(5): 1105-1120. |
29 | JIANG S, ZHANG H, LI X, et al.. Vitamin D/VDR attenuate cisplatin-induced AKI by down-regulating NLRP3/caspase-1/GSDMD pyroptosis pathway[J/OL]. J. Steroid. Biochem. Mol. Biol., 2021, 206: 105789[2023-03-24]. . |
30 | HU Z, ZHANG H, YI B, et al.. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis[J/OL]. Cell Death Dis., 2020, 11(1): 73[2023-03-24]. . |
31 | HU J, GU W, MA N, et al.. Leonurine alleviates ferroptosis in cisplatin-induced acute kidney injury by activating the Nrf2 signalling pathway[J]. Br. J. Pharmacol., 2022, 179(15): 3991-4009. |
32 | GUAN Y, LIANG X, MA Z, et al.. A single genetic locus controls both expression of DPEP1/CHMP1A and kidney disease development via ferroptosis[J/OL]. Nat. Commun., 2021, 12(1): 5078[2023-03-24]. . |
33 | KIM D-H, H-ICHOI, PARK J S, et al.. Farnesoid X receptor protects against cisplatin-induced acute kidney injury by regulating the transcription of ferroptosis-related genes[J/OL]. Redox Biol., 2022, 54: 102382[2023-03-24]. . |
34 | YU M, LIN Z, TIAN X, et al.. Downregulation of Cx43 reduces cisplatin-induced acute renal injury by inhibiting ferroptosis[J/OL]. Food Chem. Toxicol., 2021, 158: 112672[2023-03-24]. . |
35 | LI J, WEI L, ZHANG Y, et al.. Tetrahedral DNA nanostructures inhibit ferroptosis and apoptosis in cisplatin-induced renal injury[J]. ACS Appl. Bio. Mater., 2021, 4(6): 5026-5032. |
36 | BRAULT M, OLSEN T M, MARTINEZ J, et al.. Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling[J]. J. Immunol., 2018, 200(8): 2748-2756. |
37 | ORNING P, LIEN E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity[J]. J. Leukoc. Biol., 2021, 109(1): 121-141. |
38 | XU Y, MA H, SHAO J, et al.. A role for tubular necroptosis in cisplatin-induced AKI[J]. J. Am. Soc. Nephrol., 2015, 26(11): 2647-2658. |
39 | SHI J, GAO W, SHAO F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem. Sci., 2017, 42(4): 245-254. |
40 | NARAYANAN K B, PARK H H. Purification and analysis of the interactions of caspase-1 and ASC for assembly of the inflammasome[J]. Appl. Biochem. Biotechnol., 2015, 175(6): 2883-2894. |
41 | KASAHARA Y, TUDER R M, COOL C D, et al.. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema[J]. Am. J. Respir. Crit. Care Med., 2001, 163(3 Pt 1): 737-744. |
42 | YANG J, LIU Z, WANG C, et al.. Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor[J]. Proc. Natl. Acad. Sci. USA, 2018, 115(26): 6792-6797. |
43 | BARTALESI B, CAVARRA E, FINESCHI S, et al.. Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants[J]. Eur. Respir. J., 2005, 25(1): 15-22. |
44 | WPARK J, RYTER S W, CHOI A M K. Functional significance of apoptosis in chronic obstructive pulmonary disease[J]. J. Chron. Obstruct. Pulmon. Dis., 2007, 4(4): 347-353. |
45 | BADR A M, AL-KHARASHI L A, ATTIA H, et al.. TLR4/inflammasomes cross-talk and pyroptosis contribute to N-acetyl cysteine and chlorogenic acid protection against cisplatin-induced nephrotoxicity[J/OL]. Pharmaceuticals, 2023, 16(3): 337[2023-03-24]. . |
46 | SHEN X, WANG H, WENG C, et al.. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity[J/OL]. Cell Death Dis., 2021, 12(2): 186[2023-03-24]. . |
47 | DENG F, ZHENG X, SHARMA I, et al.. Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol metabolism[J]. Am. J. Physiol. Renal Physiol., 2021, 320(4): 578-595. |
48 | URSINI F, MAIORINO M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4[J]. Free Radic. Biol. Med., 2020, 152: 175-185. |
49 | SEIBT T M, PRONETH B, CONRAD M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic. Biol. Med., 2019, 133: 144-152. |
50 | WANG L, LIU Y, DU T, et al.. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ., 2020, 27(2): 662-675. |
51 | XIE Y, HOU W, SONG X, et al.. Ferroptosis: process and function[J]. Cell Death Differ., 2016, 23(3): 369-379. |
52 | LIU N, LIN X, HUANG C. Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance[J]. Br. J. Cancer, 2020, 122(2): 279-292. |
53 | IKEDA Y, HAMANO H, HORINOUCHI Y, et al.. Role of ferroptosis in cisplatin-induced acute nephrotoxicity in mice[J/OL]. J. Trace Elem. Med. Biol., 2021, 67: 126798[2023-03-24]. . |
54 | MARTIN-SANCHEZ D, RUIZ-ANDRES O, POVEDA J, et al.. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI[J]. J. Am. Soc. Nephrol., 2017, 28(1): 218-229. |
[1] | 王珍, 黄克让, 陈蕾, 周敏, 薛元夏. 应用高压冷冻-冷冻替代技术研究Erastin对颗粒细胞超微结构的影响[J]. 生物技术进展, 2023, 13(4): 637-644. |
[2] | 王彦容, 郭元彪. 基于铁死亡相关LncRNA构建肝细胞癌预后模型的研究[J]. 生物技术进展, 2023, 13(3): 473-481. |
[3] | 曹静钰, 刘承梅, 祁晨旭, 杜开颜, 陈蒙, 侯思伟. Nrf2在脊髓损伤后铁死亡的研究进展[J]. 生物技术进展, 2023, 13(2): 240-246. |
[4] | 李玉珍, 朱杰夫, 吴雄飞. PIM1激酶在顺铂诱导的急性肾损伤中的作用[J]. 生物技术进展, 2023, 13(2): 298-304. |
[5] | 黄琬玲, 朱文琦, 郭妮妮, 王楠, 任倩, 马小彤. NRG4基因对急性髓系白血病细胞增殖、凋亡及周期的影响[J]. 生物技术进展, 2023, 13(2): 305-310. |
[6] | 沈云燕, 邱琦. 褪黑素联合顺铂对宫颈癌HeLa细胞增殖、凋亡及侵袭的影响[J]. 生物技术进展, 2023, 13(2): 311-317. |
[7] | 董立强, 王斌, 苏适, 刘东琦. 雷公藤红素抗肿瘤作用及机制研究进展[J]. 生物技术进展, 2023, 13(1): 77-82. |
[8] | 杜开颜, 祁晨旭, 曹静钰, 陈蒙, 高静, 刘承梅. 铁死亡参与脊髓损伤调控的研究进展[J]. 生物技术进展, 2022, 12(6): 869-874. |
[9] | 陈晓光, 潘晓峰, 王帆, 潘宋斌. 人参皂苷Rg1对阿尔茨海默症大鼠BDNF⁃TrkB信号通路的影响[J]. 生物技术进展, 2022, 12(3): 446-451. |
[10] | 金童, 陈铖. 铁死亡与肾脏疾病相关性的研究进展[J]. 生物技术进展, 2022, 12(1): 68-74. |
[11] | 任真,赵金凤,张瑶,谢益敏,周阳,顾杰,施海峰. 钙离子在镉诱导的肾毒性中的作用机理[J]. 生物技术进展, 2019, 9(5): 476-482. |
[12] | 张亚婷,靳小艳,钟国徽,厉建伟,李英贤,马雪梅. BAG-1蛋白及其对神经系统疾病调控研究进展[J]. 生物技术进展, 2018, 8(3): 229-236. |
[13] | 任思蕊,王冰蕊,郭青,冯甜甜,王鼎,高洁,石莉红. 敲除LSD1基因对人慢性髓系白血病K562细胞周期的影响[J]. 生物技术进展, 2018, 8(3): 269-273. |
[14] | 熊咏民,杨晓莉,张荣强,李宝荣,陈静宏,代晓霞,陈群,谭武红,张峰. 硒在地方病中的防治作用及其分子机制研究进展[J]. 生物技术进展, 2017, 7(5): 501-505. |
[15] | 刘紫艳,田航宇,邢文溪,刘樾彤,李明. 亲环素A生物学活性研究进展[J]. 生物技术进展, 2014, 4(6): 405-410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部