1 |
陈星月,陈栋,陈春慧,等.中国创伤性脊髓损伤流行病学和疾病经济负担的系统评价[J].中国循证医学杂志,2018,18(2):143-150.
|
2 |
KARSY M, HAWRYLUK G. Modern medical management of spinal cord injury[J/OL]. Curr. Neurol. Neurosci. Rep., 2019, 19(9): 65[2022-12-23]. .
|
3 |
XIA M, ZHANG Q, ZHANG Y, et al.. Growth differentiation factor 15 regulates oxidative stress-dependent ferroptosis post spinal cord injury by stabilizing the p62-Keap1-Nrf2 signaling pathway[J/OL]. Front. Aging Neurosci., 2022, 14: 905115[2022-12-24]. .
|
4 |
YU Q, JIANG X, LIU X, et al.. Glutathione-modified macrophage-derived cell membranes encapsulated metformin nanogels for the treatment of spinal cord injury[J/OL]. Biomater. Adv., 2022, 133: 112668[2022-08-10]. .
|
5 |
SYKIOTIS G P, BOHMANN D. Stress-activated cap'n'collar transcription factors in aging and human disease[J/OL]. Sci. Signal., 2010, 3(112): re3[2022-08-10]. .
|
6 |
ZHANG Y, KHAN S, LIU Y, et al.. Modes of brain cell death following intracerebral hemorrhage[J/OL]. Front. Cell Neurosci., 2022, 16: 799753[2022-08-10]. .
|
7 |
TONELLI C, CHIO I I C, TUVESON D A. Transcriptional regulation by Nrf2[J]. Antioxid. Redox Signal., 2018, 29(17): 1727-1745.
|
8 |
李玲瑶,张智媛,范征.以Nrf2为靶点治疗神经退行性疾病的研究进展[J].脑与神经疾病杂志,2020,28(1):48-53.
|
9 |
SASAKI H, SATO H, KURIYAMA-MATSUMURA K, et al.. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression[J]. J. Biol. Chem., 2002, 277(47): 44765-44771.
|
10 |
WU K C, CUI J Y, KLAASSEN C D. Beneficial role of Nrf2 in regulating NADPH generation and consumption[J]. Toxicol. Sci., 2011, 123(2): 590-600.
|
11 |
KERINS M J, OOI A. The roles of NRF2 in modulating cellular iron homeostasis[J]. Antioxid. Redox Signal., 2018, 29(17): 1756-1773.
|
12 |
DODSON M, CASTRO-PORTUGUEZ R, ZHANG D D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J/OL]. Redox Biol., 23: 101107[2022-08-10]. .
|
13 |
ISHII T, ITOH K, TAKAHASHI S, et al.. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages[J]. J. Biol. Chem., 2000, 275(21): 16023-16029.
|
14 |
OSBURN W O, WAKABAYASHI N, MISRA V, et al.. Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion[J]. Arch. Biochem. Biophys., 2006, 454(1): 7-15.
|
15 |
金童,陈铖.铁死亡与肾脏疾病相关性的研究进展[J].生物技术进展,2022,12(1):68-74.
|
16 |
PIANTADOSI C A, CARRAWAY M S, BABIKER A, et al.. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1[J]. Circ. Res., 2008, 103(11): 1232-1240.
|
17 |
MERRY T L, RISTOW M. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice[J]. J. Physiol., 2016, 594(18): 5195-5207.
|
18 |
DINKOVA-KOSTOVA A T, ABRAMOV A Y. The emerging role of Nrf2 in mitochondrial function[J]. Free Radic. Biol. Med., 2015, 88(PtB): 179-188.
|
19 |
EAST D A, FAGIANI F, CROSBY J, et al.. PMI: a ΔΨm independent pharmacological regulator of mitophagy[J]. Chem. Biol., 2014, 21(11): 1585-1596.
|
20 |
SUN Y, HE L, WANG T, et al.. Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells[J]. Mol. Neurobiol., 2020, 57(11): 4628-4641.
|
21 |
MAO Y, DU J, CHEN X, et al.. Maltol promotes mitophagy and inhibits oxidative stress via the Nrf2/PINK1/Parkin pathway after spinal cord injury[J/OL]. Oxid. Med. Cell Longev., 2022, 2022: 1337630[2022-09-14]. .
|
22 |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al.. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell. 2012, 149(5): 1060-1072.
|
23 |
WEI N, LU T, YANG L, et al.. Lipoxin A4 protects primary spinal cord neurons from Erastin-induced ferroptosis by activating the Akt/Nrf2/HO-1 signaling pathway[J]. FEBS Open Bio., 2021, 11(8): 2118-2126.
|
24 |
杜开颜,祁晨旭,曹静钰,等.铁死亡参与脊髓损伤调控的研究进展[J].生物技术进展,2022,12(6):869-874.
|
25 |
STOCKWELL B R, FRIEDMANN A J P, BAYIR H, et al.. Ferroptosis: a regulated cell death nexus linking metabolism[J]. Redox Biol., 2017, 171(2): 273-285.
|
26 |
GAO M, MONIAN P, QUADRI N, et al.. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol. Cell, 2015, 59(2): 298-308.
|
27 |
YANG W S, KIM K J, GASCHLER M M, et al.. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc. Natl. Acad. Sci. USA, 2016, 113(34): 4966-4975.
|
28 |
SHIMADA K, SKOUTA R, KAPLAN A, et al.. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat. Chem. Biol., 2016, 12(7): 497-503.
|
29 |
ABRAMS R P, CARROLL W L, WOERPEL K A. Five-membered ring peroxide selectively initiates ferroptosis in cancer cells[J]. ACS Chem. Biol., 2016, 11(5): 1305-1312.
|
30 |
YAN H F, ZOU T, TUO Q Z, et al.. Ferroptosis: mechanisms and links with diseases[J/OL]. Signal Transduct. Target Ther., 2021, 6(1): 49[2022-09-16]. .
|
31 |
DOLL S, PRONETH B, TYURINA Y Y, et al.. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat. Chem. Biol., 2017, 13(1): 91-98.
|
32 |
CONRAD M, ANGELI J P, VANDENABEELE P, et al.. Regulated necrosis: disease relevance and therapeutic opportunities[J]. Nat. Rev. Drug Discov., 2016, 15(5): 348-366.
|
33 |
YANG W S, STOCKWELL B R. Ferroptosis: death by lipid peroxidation[J]. Trends Cell Biol., 2016, 26(3): 165-176.
|
34 |
YANG W S, STOCKWELL B R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem. Biol., 2008, 15(3): 234-245.
|
35 |
ANGELI J P F, SHAH R, PRATT D A, et al.. Ferroptosis inhibition: mechanisms and opportunities[J]. Trends Pharmacol. Sci., 2017, 38(5): 489-498.
|
36 |
ANANDHAN A, DODSON M, SCHMIDLIN C J, et al.. Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis[J]. Cell Chem. Biol., 2020, 27(4): 436-447.
|
37 |
SEIBT T M, PRONETH B, CONRAD M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic. Biol. Med., 2019, 133: 144-152.
|
38 |
ZHAO X, ARONOWSKI J. Nrf2 to pre-condition the brain against injury caused by products of hemolysis after ICH[J]. Transl. Stroke Res., 2013, 4(1): 71-75.
|
39 |
HAQUE A, DAS A, SAMANTARAY S, et al.. Premarin reduces neurodegeneration and promotes improvement of function in an animal model of spinal cord injury[J/OL]. Int. J. Mol. Sci., 2022, 23(4): 2384[2022-09-16]. .
|
40 |
KO C J, GAO S L, LIN T K, et al.. Ferroptosis as a major factor and therapeutic target for neuroinflammation in Parkinson's disease[J/OL]. Biomedicines, 2021, 9(11): 1679[2022-09-16]. .
|
41 |
XIA M, ZHANG Y, WU H, et al.. Forsythoside B attenuates neuro-inflammation and neuronal apoptosis by inhibition of NF-κB and p38-MAPK signaling pathways through activating Nrf2 post spinal cord injury[J/OL]. Int. Immunopharmacol., 2022, 111: 109120[2022-09-16]. .
|
42 |
EBRAHIMY N, GASTERICH N, BEHRENS V, et al.. Neuroprotective effect of the Nrf2/ARE/miRNA145-5p signaling pathway in the early phase of spinal cord injury[J/OL]. Life Sci., 2022, 304: 120726[2022-9-18]. .
|
43 |
ZHAO W, GASTERICH N, CLARNER T, et al.. Astrocytic Nrf2 expression protects spinal cord from oxidative stress following spinal cord injury in a male mouse model[J/OL]. J. Neuroinflamm., 2022, 19(1): 134[2022-09-18]. .
|
44 |
NUNNARI J, SUOMALAINEN A. Mitochondria: in sickness and in health[J]. Cell, 2012, 148(6): 1145-1159.
|
45 |
HAYES J D, DINKOVA-KOSTOVA A T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism[J]. Trends Biochem, Sci., 2014, 39(4): 199-218.
|
46 |
KANG T C. Nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitochondrial dynamics/mitophagy in neurological diseases[J/OL]. Antioxidants(Basel), 2020, 9(7): 617[2022-09-22]. .
|
47 |
WANG J, ZHANG W, LV C, et al.. A novel biscoumarin compound ameliorates cerebral ischemia reperfusion-induced mitochondrial oxidative injury via Nrf2/Keap1/ARE signaling[J/OL]. Neuropharmacology, 2020, 167: 107918[2022-09-22]. .
|
48 |
TAKEDA H, YAMAGUCHI T, YANO H, et al.. Microglial metabolic disturbances and neuroinflammation in cerebral infarction[J]. J. Pharmacol. Sci., 2021, 145(1): 130-139.
|
49 |
VANDEN B T, LINKERMANN A, JOUAN-LANHOUET S, et al.. Regulated necrosis: the expanding network of non-apoptotic cell death pathways[J]. Nat. Rev. Mol. Cell Biol., 2014, 15(2): 135-147.
|
50 |
HEINE K B, HOOD W R. Mitochondrial behaviour, morphology, and animal performance[J]. Biol. Rev. Camb. Philos. Soc., 2020, 95(3): 730-737.
|
51 |
GE M H, TIAN H, MAO L, et al.. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway[J]. CNS Neurosci. Ther., 2021, 27(9): 1023-1040.
|
52 |
CHEN Y, LIU S, LI J, et al.. The latest view on the mechanism of ferroptosis and its research progress in spinal cord injury[J/OL]. Oxid Med. Cell Longev., 2020, 2020: 6375938[2022-12-24]. .
|
53 |
FENG Z, MIN L, CHEN H, et al.. Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury[J/OL]. Redox Biol., 2021, 43: 101984[2022-09-27]. .
|
54 |
JIA Z, ZHU H, LI J, et al.. Oxidative stress in spinal cord injury and antioxidant-based intervention[J]. Spinal Cord, 2012, 50(4): 264-274.
|
55 |
MAO L, WANG H D, WANG X L, et al.. Disruption of Nrf2 exacerbated the damage after spinal cord injury in mice[J]. J. Trauma Acute Care Surg., 2012, 72(1): 189-198.
|
56 |
YAN N, XU Z, QU C, et al.. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway[J/OL]. Int. Immunopharmacol., 2021, 98: 107844[2022-10-10]. .
|
57 |
张振.Nrf2/HO-1信号通路在人参皂苷Rg1作用于脊髓损伤中的机制研究[D].湖北十堰:湖北医药学院,2022.
|
58 |
FENG H, SCHORPP K, JIN J, et al.. Transferrin receptor is a specific ferroptosis marker[J]. Cell Rep., 2020, 30(10): 3411-3423.
|
59 |
HARADA N, KANAYAMA M, MARUYAMA A, et al.. Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages[J]. Arch Biochem. Biophys., 2011, 508(1): 101-109.
|
60 |
郭淑慧,杨晔,江杨洋,等.神经源性膀胱miRNA-mRNA调控网络的筛选与验证[J].中国组织工程研究,2023,27(20):3143-3150.
|