1 |
CHEN C C, WONG C W. Neurosensory mechanotransduction through acid-sensing ion channels[J]. J. Cell. Mol. Med., 2013, 17(3): 337-349.
|
2 |
GAO W, HASAN H, ANDERSON D E, et al.. The role of mechanically-activated ion channels Piezo1, Piezo2, and TRPV4 in chondrocyte mechanotransduction and mechano-therapeutics for osteoarthritis[J/OL]. Front. Cell Dev. Biol., 2022, 10: 885224[2022-05-04]. .
|
3 |
JIN P, JAN L Y, JAN Y N. Mechanosensitive ion channels: structural features relevant to mechanotransduction mechanisms[J]. Annu. Rev. Neurosci., 2020, 43: 207-229.
|
4 |
ROMANI P, VALCARCEL-JIMENEZ L, FREZZA C, et al.. Crosstalk between mechanotransduction and metabolism[J]. Nat. Rev. Mol. Cell Biol., 2021, 22(1): 22-38.
|
5 |
GENG J, ZHAO Q, ZHANG T, et al.. In touch with the mechanosensitive piezo channels: structure, ion permeation, and mechanotransduction[J]. Curr. Top. Membr., 2017, 79: 159-195.
|
6 |
DOUGUET D, HONORÉ E. Mammalian mechanoelectrical transduction: structure and function of force-gated ion channels[J]. Cell, 2019, 179(2): 340-354.
|
7 |
DANCE A. The quest to decipher how the body's cells sense touch[J]. Nature, 2020, 577(7789): 158-160.
|
8 |
COSTE B, XIAO B, SANTOS J S, et al.. Piezo proteins are pore-forming subunits of mechanically activated channels[J]. Nature, 2012, 483(7388): 176-181.
|
9 |
JIANG Y, YANG X, JIANG J, et al.. Structural designs and mechanogating mechanisms of the mechanosensitive piezo channels[J]. Trends Biochem. Sci., 2021, 46(6): 472-488.
|
10 |
MURTHY S E, DUBIN A E, PATAPOUTIAN A. Piezos thrive under pressure: mechanically activated ion channels in health and disease[J]. Nat. Rev. Mol. Cell Biol., 2017, 18(12): 771-783.
|
11 |
WU J, LEWIS A H, GRANDL J. Touch, tension, and transduction-the function and regulation of piezo ion channels[J]. Trends Biochem. Sci., 2017, 42(1): 57-71.
|
12 |
LI J, HOU B, TUMOVA S, et al.. Piezo1 integration of vascular architecture with physiological force[J]. Nature, 2014, 515(7526): 279-282.
|
13 |
WANG S, CHENNUPATI R, KAUR H, et al.. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release[J]. J. Clin. Invest., 2016, 126(12): 4527-4536.
|
14 |
MCHUGH B J, MURDOCH A, HASLETT C, et al.. Loss of the integrin-activating transmembrane protein Fam38A (Piezo1) promotes a switch to a reduced integrin-dependent mode of cell migration[J/OL]. PLoS ONE, 2012, 7(7): e40346[2022-07-05]. .
|
15 |
SOLIS A G, BIELECKI P, STEACH H R, et al.. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity[J]. Nature, 2019, 573(7772): 69-74.
|
16 |
CAHALAN S M, LUKACS V, RANADE S S, et al.. Piezo1 links mechanical forces to red blood cell volume[J/OL]. eLife, 2015, 4: e07370[2023-05-22]. .
|
17 |
EISENHOFFER G T, LOFTUS P D, YOSHIGI M, et al.. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia[J]. Nature, 2012, 484(7395): 546-549.
|
18 |
WOO S H, LUKACS V, DE NOOIJ J C, et al.. Piezo2 is the principal mechanotransduction channel for proprioception[J]. Nat. Neurosci., 2015, 18(12): 1756-1762.
|
19 |
XIAO B. Levering mechanically activated piezo channels for potential pharmacological intervention[J]. Annu. Rev. Pharmacol. Toxicol., 2020, 60: 195-218.
|
20 |
DATKHAEVA I, ARBOLEDA V A, SENARATNE T N, et al.. Identification of novel PIEZO1 variants using prenatal exome sequencing and correlation to ultrasound and autopsy findings of recurrent Hydrops fetalis [J]. Am. J. Med. Genet. A, 2018, 176(12): 2829-2834.
|
21 |
GE J, LI W, ZHAO Q, et al.. Architecture of the mammalian mechanosensitive Piezo1 channel[J]. Nature, 2015, 527(7576): 64-69.
|
22 |
SAOTOME K, MURTHY S E, KEFAUVER J M, et al.. Author correction: structure of the mechanically activated ion channel Piezo1[J/OL]. Nature, 2022, 607(7919): E10[2022-07-04]. .
|
23 |
ZHAO Q, ZHOU H, LI X, et al.. The mechanosensitive Piezo1 channel: a three-bladed propeller-like structure and a lever-like mechanogating mechanism[J]. FEBS J., 2019, 286(13): 2461-2470.
|
24 |
ANDOLFO I, ALPER S L, DE FRANCESCHI L, et al.. Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1[J]. Blood, 2013, 121(19): 3925-3935, S1-12.
|
25 |
LEWIS A H, GRANDL J. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension[J/OL]. eLife, 2015, 4: e12088[2022-12-08]. .
|
26 |
WANG Y, CHI S, GUO H, et al.. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel[J/OL]. Nat. Commun., 2018, 9(1): 1300[2023-04-03]. .
|
27 |
GUO Y R, MACKINNON R. Structure-based membrane dome mechanism for Piezo mechanosensitivity[J/OL]. eLife, 2017, 6: e33660[2022-12-06]. .
|
28 |
NOURSE J L, PATHAK M M. How cells channel their stress: interplay between Piezo1 and the cytoskeleton[J]. Semin. Cell Dev. Biol., 2017, 71: 3-12.
|
29 |
QI Y, ANDOLFI L, FRATTINI F, et al.. Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons[J/OL]. Nat. Commun., 2015, 6: 8512[2023-05-07]. .
|
30 |
COSTE B, MATHUR J, SCHMIDT M, et al.. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels[J]. Science, 2010, 330(6000): 55-60.
|
31 |
ALBUISSON J, MURTHY S E, BANDELL M, et al.. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels[J/OL]. Nat. Commun., 2013, 4: 1884[2013-05-23]. .
|
32 |
BAE C, GOTTLIEB P A, SACHS F. Human PIEZO1: removing inactivation[J]. Biophys. J., 2013, 105(4): 880-886.
|
33 |
ZHENG W, GRACHEVA E O, BAGRIANTSEV S N. A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels[J/OL]. eLife, 2019, 8: e44003[2023-05-07]. .
|
34 |
李冠群, 梁超杰, 夏峰. 基于甲基化组学数据建立并验证肝细胞癌预后评价模型研究[J]. 生物技术进展, 2023, 13(2): 282-290.
|
35 |
朱兴墅, 黄军杰, 翁才明, 等. 基于生物信息学分析林奇综合征相关结直肠癌关键Hub基因的筛选与功能富集分析[J]. 生物技术进展, 2023, 13(2): 291-297.
|
36 |
WANG L H, WU C F, RAJASEKARAN N, et al.. Loss of tumor suppressor gene function in human cancer: an overview[J]. Cell. Physiol. Biochem., 2018, 51(6): 2647-2693.
|
37 |
LORTET-TIEULENT J, GEORGES D, BRAY F, et al.. Profiling global cancer incidence and mortality by socioeconomic development[J]. Int. J. Cancer, 2020, 147(11): 3029-3036.
|
38 |
HOJMAN P, GEHL J, CHRISTENSEN J F, et al.. Molecular mechanisms linking exercise to cancer prevention and treatment[J]. Cell Metab., 2018, 27(1): 10-21.
|
39 |
LIAO H Y, DA C M, WU Z L, et al.. Ski: double roles in cancers[J]. Clin. Biochem., 2021, 87: 1-12.
|
40 |
HAN Y, LIU C, ZHANG D, et al.. Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the Akt/mTOR pathway and acceleration of cell cycle[J]. Int. J. Oncol., 2019, 55(3): 629-644.
|
41 |
HASEGAWA K, FUJII S, MATSUMOTO S, et al.. YAP signaling induces PIEZO1 to promote oral squamous cell carcinoma cell proliferation[J]. J. Pathol., 2021, 253(1): 80-93.
|
42 |
ZHANG J, ZHOU Y, HUANG T, et al.. PIEZO1 functions as a potential oncogene by promoting cell proliferation and migration in gastric carcinogenesis[J]. Mol. Carcinog., 2018, 57(9): 1144-1155.
|
43 |
DE FELICE D, ALAIMO A. Mechanosensitive piezo channels in cancer: focus on altered calcium signaling in cancer cells and in tumor progression[J/OL]. Cancers, 2020, 12(7): 1780[2023-05-07]. .
|
44 |
MAROTO R, KUROSKY A, HAMILL O P. Mechanosensitive Ca(2+) permeant cation channels in human prostate tumor cells[J]. Channels, 2012, 6(4): 290-307.
|
45 |
HUANG Z, SUN Z, ZHANG X, et al.. Loss of stretch-activated channels, PIEZOs, accelerates non-small cell lung cancer progression and cell migration[J/OL]. Biosci. Rep., 2019, 39(3): BSR20181679[2023-05-07]. .
|
46 |
EISENHOFFER G T, ROSENBLATT J. Bringing balance by force: live cell extrusion controls epithelial cell numbers[J]. Trends Cell Biol., 2013, 23(4): 185-192.
|