生物技术进展 ›› 2021, Vol. 11 ›› Issue (5): 610-617.DOI: 10.19586/j.2095-2341.2021.0116
收稿日期:
2021-06-15
接受日期:
2021-07-15
出版日期:
2021-09-25
发布日期:
2021-10-08
通讯作者:
王秦虎
作者简介:
李东翱 E-mail: 2503955906@qq.com;
基金资助:
Dongao LI(), Huiquan LIU, Qinhu WANG(
)
Received:
2021-06-15
Accepted:
2021-07-15
Online:
2021-09-25
Published:
2021-10-08
Contact:
Qinhu WANG
摘要:
由禾谷镰刀菌引起的小麦赤霉病直接为害作物穗部,不仅严重影响小麦产量,还可因为毒素污染问题威胁人畜健康。近年来对小麦与禾谷镰刀菌互作的转录组学研究带来了很多新见解,概述了小麦响应禾谷镰刀菌侵染的转录组学研究进展,主要比较了不同抗性品种、不同器官、不同籽粒发育时期的小麦穗部在禾谷镰刀菌侵染时的基因表达特征,总结了赤霉病感染时小麦的激素响应、信号传导、转录调控和防卫相关基因的表达规律,以期促进研究者对小麦响应禾谷镰刀菌侵染规律的理解。
中图分类号:
李东翱, 刘慧泉, 王秦虎. 小麦响应禾谷镰刀菌侵染的转录组学研究进展[J]. 生物技术进展, 2021, 11(5): 610-617.
Dongao LI, Huiquan LIU, Qinhu WANG. Research Progress on Wheat Transcriptomes Responsive to Fusarium graminearum Infection[J]. Current Biotechnology, 2021, 11(5): 610-617.
模块 | 差异表达基因与差异累积代谢物 | 参考文献 |
---|---|---|
水杨酸 | ACD11, LPS‑induced tumor necrosis factor alpha factor, NPR1, Phytoalexin‑deficient 4‑1 protein (PAD4), Salicylate O‑methyltransferase, SAP12, Guanine nucleotide‑binding protein subunit alpha‑like protein | [ |
茉莉酸 | 12‑oxophytodienoate reductase, 12‑oxophytodienoate reductase‑like protein, Accelerated cell death 11, Allene oxide cyclase, Allene oxide synthase, Jasmonate ZIM domain protein, Lipoxygenases, Molybdopterin biosynthesis protein CNX1, AOS, AOC, OPR3, JAZ, 4‑coumarate‑CoA ligase family protein, LOX, COI1 | [ |
乙烯 | ACS6, Ethylene insensitive3, Ethylene insensitive 3‑like protein, Ethylene responsive transcription factor, MBF1C, MntH2, Ethylene insensitive 2 transporter, ACS, ACO, SAM, EIN2, ERF, ETR, CTR, 1‑aminocyclopropane‑1‑carboxylate | [ |
脱落酸 | ABA‑responsive binding factor, Abscisic acid receptor, ABA 8′‑hydroxylase, GRAM domain‑containing protein, ABA‑responsive, ABA deficient2, ABA deficient1, ABA1, ABA2, ABA3 | [ |
生长素 | Auxin efflux carrier family proteins, Auxin‑induced in root cultures protein 12, Auxin‑responsive protein, Auxin influx transporter, Auxin efflux carrier components, Auxin response factor, Auxin‑responsive protein, Early auxin response protein, GH3.3 | [ |
Ca2+信号 | PMCA, Calmodulin, CDPK, CIPK, Calcium sensing receptor | [ |
ROS/NO | Nox, APX, POD, GPX, SOD, CAT, NOS, Prx | [ |
转录因子 | WRKY65, WRKY51, WRKY50, WRKY33, WRKY30, WRKY41, WRKY71, WRKY55, WRKY3, WRKY11, WRKY40, WRKY46, WRKY9, Myb, RKY35, NAC‑domain Contains transcription factor, WRKY45, WRKY70, CYP | [ |
PR基因 | Pathogenesis‑related protein 1.1 (PR1), β‑1‑3‑glucanases (PR2), Chitinases (PR3), Vacuolar defense proteins (PR4), Thaumatin‑like proteins (PR5), Non‑specific lipid transfer proteins (PR14) | [ |
LRR‑RK | NB‑ARC domain‑containing disease resistance proteins,Acidic endochitinase precursors,Receptor like protein 27 (RLP27),Receptor like protein 33 (RLP33), Receptor like protein 46 (RLP46),FLS2 | [ |
PAL途径 | Tryptophan biosynthesis, Aromatic amino acid metabolism, Phenylalanine ammonia lyase 代谢物: phenols, phenolic acids, lignans, stilbenes, flavanoness, flavonols, flavones, chalcones, lignins | [ |
表1 禾谷镰刀菌侵染时小麦差异表达基因和差异累积代谢物
Table 1 Differentially expressed genes and differentially accumulated metabolites in wheat during Fusarium graminearum infection
模块 | 差异表达基因与差异累积代谢物 | 参考文献 |
---|---|---|
水杨酸 | ACD11, LPS‑induced tumor necrosis factor alpha factor, NPR1, Phytoalexin‑deficient 4‑1 protein (PAD4), Salicylate O‑methyltransferase, SAP12, Guanine nucleotide‑binding protein subunit alpha‑like protein | [ |
茉莉酸 | 12‑oxophytodienoate reductase, 12‑oxophytodienoate reductase‑like protein, Accelerated cell death 11, Allene oxide cyclase, Allene oxide synthase, Jasmonate ZIM domain protein, Lipoxygenases, Molybdopterin biosynthesis protein CNX1, AOS, AOC, OPR3, JAZ, 4‑coumarate‑CoA ligase family protein, LOX, COI1 | [ |
乙烯 | ACS6, Ethylene insensitive3, Ethylene insensitive 3‑like protein, Ethylene responsive transcription factor, MBF1C, MntH2, Ethylene insensitive 2 transporter, ACS, ACO, SAM, EIN2, ERF, ETR, CTR, 1‑aminocyclopropane‑1‑carboxylate | [ |
脱落酸 | ABA‑responsive binding factor, Abscisic acid receptor, ABA 8′‑hydroxylase, GRAM domain‑containing protein, ABA‑responsive, ABA deficient2, ABA deficient1, ABA1, ABA2, ABA3 | [ |
生长素 | Auxin efflux carrier family proteins, Auxin‑induced in root cultures protein 12, Auxin‑responsive protein, Auxin influx transporter, Auxin efflux carrier components, Auxin response factor, Auxin‑responsive protein, Early auxin response protein, GH3.3 | [ |
Ca2+信号 | PMCA, Calmodulin, CDPK, CIPK, Calcium sensing receptor | [ |
ROS/NO | Nox, APX, POD, GPX, SOD, CAT, NOS, Prx | [ |
转录因子 | WRKY65, WRKY51, WRKY50, WRKY33, WRKY30, WRKY41, WRKY71, WRKY55, WRKY3, WRKY11, WRKY40, WRKY46, WRKY9, Myb, RKY35, NAC‑domain Contains transcription factor, WRKY45, WRKY70, CYP | [ |
PR基因 | Pathogenesis‑related protein 1.1 (PR1), β‑1‑3‑glucanases (PR2), Chitinases (PR3), Vacuolar defense proteins (PR4), Thaumatin‑like proteins (PR5), Non‑specific lipid transfer proteins (PR14) | [ |
LRR‑RK | NB‑ARC domain‑containing disease resistance proteins,Acidic endochitinase precursors,Receptor like protein 27 (RLP27),Receptor like protein 33 (RLP33), Receptor like protein 46 (RLP46),FLS2 | [ |
PAL途径 | Tryptophan biosynthesis, Aromatic amino acid metabolism, Phenylalanine ammonia lyase 代谢物: phenols, phenolic acids, lignans, stilbenes, flavanoness, flavonols, flavones, chalcones, lignins | [ |
1 | 张广旭, 王康君, 谭一罗, 等. 小麦穗部产量性状研究进展与展望[J]. 农业与技术, 2021, 41(08): 809-813. |
2 | KAZAN K, GARDINER D M, MANNERS J M. On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance: recent advances in Fusarium-cereal interactions[J]. Mol. Plant Pathol., 2012, 13(4): 399-413. |
3 | SOBROVA P, ADAM V, VASATKOVA A, et al.. Deoxynivalenol and its toxicity[J]. Interdiscip. Toxicol., 2010, 3(3): 94-99. |
4 | EFSA P. Statement on the risks for public health related to a possible increase of the maximum level of deoxynivalenol for certain semi-processed cereal products[J]. EFSA J., 2013, 11(12): 3490. |
5 | TRAIL F. For blighted waves of grain: Fusarium graminearum in the postgenomics era[J]. Plant Physiol. Am. Soc. Plant Biol., 2009, 149(1): 103-110. |
6 | DEAN R, KAN J A L, PRETORIUS Z A, et al.. The top 10 fungal pathogens in molecular plant pathology: top 10 fungal pathogens[J]. Mol. Plant Pathol., 2012, 13(4): 414-430. |
7 | 康振生, 黄丽丽, BUCHENAUER H, 等. 禾谷镰刀菌在小麦穗部侵染过程的细胞学研究[J]. 植物病理学报, 2004, 34(4): 329-335. |
8 | BAI G, SHANER G. Scab of wheat: prospects for control.[J]. Plant Disease, 1994, 78(8): 760-766. |
9 | 陈云, 王建强, 杨荣明, 等. 小麦赤霉病发生危害形势及防控对策[J]. 植物保护, 2017, 43(05): 11-17. |
10 | PAUL P A, LIPPS P E, HERSHMAN D E, et al.. A quantitative review of tebuconazole effect on Fusarium head blight and deoxynivalenol content in wheat[J]. Phytopathology, 2007, 97(2): 211-220. |
11 | YUEN G Y, SCHONEWEIS S D. Strategies for managing Fusarium head blight and deoxynivalenol accumulation in wheat[J]. Int. J. Food Microbiol., 2007, 119(1): 126-130. |
12 | IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome[J/OL]. Science, 2018, 361(6403): eaar7191[2021-08-03]. . |
13 | CUOMO C A, GÜLDENER U, XU J R, et al.. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization[J]. Science, 2007, 317(5843): 1400-1402. |
14 | DERISI J, PENLAND L, BROWN P O, et al.. Use of a cDNA microarray to analyse gene expression patterns in human cancer[J]. Nat. Genet., 1996, 14(4): 457-460. |
15 | WIT P, PESPENI M H, LADNER J T, et al.. The simple fool's guide to population genomics via RNA‐Seq: an introduction to high-throughput sequencing data analysis[J]. Mol. Ecol. Resour., 2012, 12(6): 1058-1067. |
16 | MESTERHAZY A. Types and components of resistance to Fusarium head blight of wheat[J]. Plant Breed., 1995, 114(5): 377-386. |
17 | BUERSTMAYR H, BAN T, ANDERSON J A. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review[J]. Plant Breed., 2009, 128(1): 1-26. |
18 | WANG L, LI Q, LIU Z, et al.. Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against Fusarium head blight[J/OL]. PLoS ONE, 2018, 13(11): e0207036[2021-08-03]. . |
19 | GUNNAIAH R, KUSHALAPPA A C. Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum[J]. Plant Physiol. Biochem., 2014, 83: 40-50. |
20 | TANG D, WANG G, ZHOU J M. Receptor kinases in plant-pathogen interactions: more than pattern recognition[J]. Plant Cell, 2017, 29(4): 618-637. |
21 | PAN Y, LIU Z, ROCHELEAU H, et al.. Transcriptome dynamics associated with resistance and susceptibility against Fusarium head blight in four wheat genotypes[J/OL]. BMC Genom., 2018,19: 642[2021-08-03]. . |
22 | GOLKARI S, GILBERT J, PRASHAR S, et al.. Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organ-specific and differentially expressed genes[J]. Plant Biotechnol. J., 2007, 5(1): 38-49. |
23 | CHETOUHI C, BONHOMME L, LASSERRE-ZUBER P, et al.. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes[J]. Funct. Integrat. Genom., 2016, 16(2): 183-201. |
24 | KAZAN K, LYONS R. Intervention of phytohormone pathways by pathogen effectors[J]. Plant Cell, 2014, 26(6): 2285-2309. |
25 | SCHENK P M, KAZAN K, WILSON I, et al.. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis[J]. Proc. Natl. Acad. Sci. USA, 2000, 97(21): 11655-11660. |
26 | DING L, XU H, YI H, et al.. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways[J/OL]. PLoS ONE, 2011, 6(4): e19008[2021-08-03]. . |
27 | LOAKE G, GRANT M. Salicylic acid in plant defence—the players and protagonists[J]. Curr. Opin. Plant Biol., 2007, 10(5): 466-472. |
28 | MAKANDAR R, NALAM V J, LEE H, et al.. Salicylic acid regulates basal resistance to Fusarium head blight in wheat[J]. Mol. Plant Microbe Interact., 2012, 25(3): 431-439. |
29 | MAKANDAR R, ESSIG J S, SCHAPAUGH M A, et al.. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1[J]. Mol. Plant Microbe Interact., 2006, 19(2): 123-129. |
30 | XIAO J, JIN X, JIA X, et al.. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai[J/OL]. BMC Genom., 2013, 14(1): 197[2021-08-03]. . |
31 | PIETERSE C M J, DOES DVAN D E R, ZAMIOUDIS C, et al.. Hormonal modulation of plant immunity[J]. Ann. Rev. Cell Dev. Biol., 2012, 28: 489-521. |
32 | LI G, YEN Y. Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat[J]. Crop Sci., 2008, 48(5): 1888-1896. |
33 | FARMAKI T, SANMARTÍN M, JIMÉNEZ P, et al.. Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts[J]. J. Exp. Bot., 2007, 58(3): 555-568. |
34 | BALBI V, DEVOTO A. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios[J]. New Phytol., 2008, 177(2): 301-318. |
35 | CHEN X, STEED A, TRAVELLA S, et al.. Fusarium graminearum exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants[J]. New Phytol., 2009, 182(4): 975-983. |
36 | DONG X, SA J A, ethylene, and disease resistance in plants[J]. Curr. Opin. Plant Biol., 1998, 1(4): 316-323. |
37 | GLAZEBROOK J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Ann. Rev. Phytopathol., 2005, 43(1): 205-227. |
38 | TON J, FLORS V, MAUCH-MANI B. The multifaceted role of ABA in disease resistance[J]. Trends Plant Sci., 2009, 14(6): 310-317. |
39 | KUMAR J, RAI K M, PIRSEYEDI S, et al.. Epigenetic regulation of gene expression improves Fusarium head blight resistance in durum wheat[J/OL]. Sci. Rep., 2020, 10[2021-08-03]. . |
40 | BUHROW L M, CRAM D, TULPAN D, et al.. Exogenous abscisic acid and gibberellic acid elicit opposing effects on Fusarium graminearum infection in wheat[J]. Phytopathology, 2016, 106(9): 986-996. |
41 | QI P-F, BALCERZAK M, ROCHELEAU H, et al.. Jasmonic acid and abscisic acid play important roles in host-pathogen interaction between Fusarium graminearum and wheat during the early stages of Fusarium head blight[J]. Physiol. Mol. Plant Pathol., 2016, 93: 39-48. |
42 | FRIML J. Auxin transport—shaping the plant[J]. Curr. Opin. Plant Biol., 2003, 6(1): 7-12. |
43 | KAZAN K, MANNERS J M. Linking development to defense: auxin in plant-pathogen interactions[J]. Trends Plant Sci., 2009, 14(7): 373-382. |
44 | PRITSCH C, MUEHLBAUER G J, BUSHNELL W R, et al.. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum[J]. Mol. Plant Microbe Interact., 2000, 13(2): 159-169. |
45 | JIA H, CHO S, MUEHLBAUER G J. Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium head blight-resistant and -susceptible alleles[J]. Mol. Plant Microbe Interact., 2009, 22(11): 1366-1378. |
46 | ERAYMAN M, TURKTAS M, AKDOGAN G, et al.. Transcriptome analysis of wheat inoculated with Fusarium graminearum[J/OL]. Front. Plant Sci., 2015, 6:867[2021-08-03]. . |
47 | LECOURIEUX D, RANJEVA R, PUGIN A. Calcium in plant defence-signalling pathways[J]. New Phytol., 2006, 171(2): 249-269. |
48 | DU L, ALI G S, SIMONS K A, et al.. Ca2+/calmodulin regulates salicylicacid-mediated plant immunity[J]. Nature, 2009, 457(7233): 1154-1158. |
49 | GARCÍA-LIMONES C, DORADO G, NAVAS-CORTÉS J A, et al.. Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes[J]. Plant Biol., 2009, 11(2): 194-203. |
50 | ZAGO E, MORSA S, DAT J F, et al.. Nitric oxide- and hydrogen peroxideresponsive gene regulation during cell death induction in Tobacco[J]. Plant Physiol., 2006, 141(2): 404-411. |
51 | ZANINOTTO F, CAMERA S L, POLVERARI A, et al.. Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response[J]. Plant Physiol., 2006, 141(2): 379-383. |
52 | SINGH K. Transcription factors in plant defense and stress responses[J]. Curr. Opin. Plant Biol., 2002, 5(5): 430-436. |
53 | BAHRINI I, SUGISAWA M, KIKUCHI R, et al.. Characterization of a wheat transcription factor, TaWRKY45, and its effect on Fusarium head blight resistance in transgenic wheat plants[J]. Breed. Sci., 2011, 61(2): 121-129. |
54 | KAGE U, YOGENDRA K N, KUSHALAPPA A C. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike[J/OL]. Sci. Rep., 2017, 7(1): 42596[2021-08-03]. . |
55 | PRITSCH C, VANCE C P, BUSHNELL W R, et al.. Systemic expression of defense response genes in wheat spikes as a response to Fusarium graminearum infection[J]. Physiol. Mol. Plant Pathol., 2001, 58(1): 1-12. |
56 | DE SMET I, VOSS U, JÜRGENS G, et al.. Receptor-like kinases shape the plant[J]. Nature Cell Biol., 2009, 11(10): 1166-1173. |
57 | THAPA G, GUNUPURU L R, HEHIR J G, et al.. A pathogen-responsive leucine rich receptor like kinase contributes to Fusarium resistance in cereals[J/OL]. Front. Plant Sci., 2018, 9:867[2021-08-03]. . |
58 | MUHOVSKI Y, BATOKO H, MJACQUEMIN J. Identification, characterization and mapping of differentially expressed genes in a winter wheat cultivar (Centenaire) resistant to Fusarium graminearum infection[J]. Mol. Biol. Rep., 2012, 39(10): 9583-9600. |
59 | WALTER S, NICHOLSON P, DOOHAN F M. Action and reaction of host and pathogen during Fusarium head blight disease[J]. New Phytol., 2010, 185(1): 54-66. |
[1] | 李敏敏, 夏美娟, 赵晶晶, 陈肖源, 刘翠翠, 苏培, 王洪涛, 周家喜. 人类胚胎期和成年期巨核细胞的分子特征比较[J]. 生物技术进展, 2022, 12(4): 577-583. |
[2] | 曹巧, 史占良, 张国丛, 班进福, 郑树松, 傅晓艺, 张士昌, 何明琦, 韩然, 高振贤. CRISPR/Cas9技术在小麦育种中的应用进展[J]. 生物技术进展, 2021, 11(6): 661-667. |
[3] | 咸莉梅, 胡怡, 李磊, 孙政玺, 何心尧, 李韬. 浅议小麦赤霉病抗性类型与鉴定方法的对应性[J]. 生物技术进展, 2021, 11(5): 554-559. |
[4] | 肖进, 程怡璠, 宋融融, 孙丽, 王宗宽, 袁春霞, 王海燕, 王秀娥. 小麦抗赤霉病外源种质的创制和育种利用[J]. 生物技术进展, 2021, 11(5): 560-566. |
[5] | 王仪威, 冯祎高, 刘润然, 卢春甜, 曹爱忠, 张瑞奇. 小麦-鹅观草第一部分同源群染色体渗入系鉴定与基因组归属分析[J]. 生物技术进展, 2021, 11(5): 567-573. |
[6] | 王永刚, 张旭, 张鹏, 马鸿翔. 植物细胞工程在小麦抗赤霉病育种中的应用[J]. 生物技术进展, 2021, 11(5): 574-580. |
[7] | 翟文玲, 刘彩云, 刘颖, 付必胜, 蔡瑾, 郭炜, 张巧凤, 吴纪中. 小麦赤霉病新抗源的发掘与抗性位点的检测分析[J]. 生物技术进展, 2021, 11(5): 581-589. |
[8] | 张勇, 胡文静, 张春梅, 蒋正宁, 吕国峰, 高德荣. 我国“十三五”育成小麦新品种(系)抗赤霉病进展分析与展望[J]. 生物技术进展, 2021, 11(5): 590-598. |
[9] | 苏培森. 小麦赤霉病抗病机制研究进展[J]. 生物技术进展, 2021, 11(5): 599-609. |
[10] | 段凯莉, 江聪, 王光辉. 禾谷镰刀菌蛋白激酶研究进展[J]. 生物技术进展, 2021, 11(5): 618-627. |
[11] | 刘家俊, 陈琛, 温明星, 郭瑞, 姚维成, 李东升. 基于共表达网络和蛋白互作分析挖掘小麦赤霉病抗性相关核心蛋白[J]. 生物技术进展, 2021, 11(5): 628-633. |
[12] | 阮双, 司红起. 小麦DON毒素研究进展[J]. 生物技术进展, 2021, 11(5): 634-641. |
[13] | 刘馨, 方欣, 汪爽, 王立雯, 武德亮, LEE Yin Won, MOHAMED Sherif Ramzy, 徐剑宏, 史建荣. DON生物合成的亚细胞定位和精准外排研究进展[J]. 生物技术进展, 2021, 11(5): 642-646. |
[14] | 李兵, 梁晋刚, 朱育攀, 王御琦, 焦浈. 我国小麦赤霉病成灾原因分析及防控策略探讨[J]. 生物技术进展, 2021, 11(5): 647-652. |
[15] | 孙政玺, 胡思嘉, 周益雷, 胡怡, 江宁, 李磊, 李韬. sRNA的研究概述及其在小麦赤霉病防治中的应用展望[J]. 生物技术进展, 2021, 11(5): 653-659. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部