生物技术进展 ›› 2021, Vol. 11 ›› Issue (5): 599-609.DOI: 10.19586/j.2095-2341.2021.0111
收稿日期:
2021-06-15
接受日期:
2021-07-27
出版日期:
2021-09-25
发布日期:
2021-10-08
作者简介:
苏培森 E-mail: pssu2014@163.com
基金资助:
Received:
2021-06-15
Accepted:
2021-07-27
Online:
2021-09-25
Published:
2021-10-08
摘要:
小麦赤霉病是一种小麦穗部病害,严重影响小麦的产量和品质。挖掘小麦赤霉病抗性基因,揭示其抗病机制,对于提高小麦赤霉病抗性,推动小麦赤霉病抗性育种进程具有重要的意义。系统阐述了抗赤霉病相关QTL、多组学研究、细胞壁防卫、信号转导、次生代谢物合成、识别应答等小麦赤霉病抗性机制的研究进展,并对未来小麦赤霉病抗性机制的研究方向进行了探讨。希望以此加深研究者对小麦赤霉病抗性机制的了解,为未来小麦抗赤霉病分子机制研究提供理论基础,为小麦抗赤霉病遗传改良提供丰富的基因资源。
中图分类号:
苏培森. 小麦赤霉病抗病机制研究进展[J]. 生物技术进展, 2021, 11(5): 599-609.
Peisen SU. Research Advances in Wheat FHB Resistance Mechanism[J]. Current Biotechnology, 2021, 11(5): 599-609.
分类 | 基因名称 | 基因描述 | 参考文献 |
---|---|---|---|
细胞壁相关基因 | TaPRP3 | Proline‑rich proteins | [ |
TaPGIP | Polygalacturonase‑inhibiting protein | [ | |
Chitinase | [ | ||
WAK2 | B‑1,3‑glucanase | ||
Wall‑associated receptor‑like kinase | [ | ||
水杨酸信号路径 | TaNPR1 | Non‑expresser of PR | [ |
TaNPR2 | Non‑expresser of PR | [ | |
TaNPR3 | Non‑expresser of PR | ||
TaICS | Isochorismate synthase | ||
TaTGA2 | B‑ZIP transcription factors | [ | |
TaSSI2 | Stearoyl‑acyl carrier protein fatty acid desaturase | [ | |
茉莉酸信号路径 | TaAOC | Allene oxide cyclase | [ |
TaAOS | Allene oxide synthase | ||
TaOPR3 | 12‑oxophytodienoic acid reductase | ||
生长素信号路径 | TaTIR1 | Transport inhibitor response | [ |
Fhb1 | PFT | Pore‑forming toxin‑like | [ |
HIS | Histidine‑rich calcium‑binding‑protein gene | [ | |
类苯基丙烷代谢途径 | TaACT | Agmatine coumaroyl transferase | [ |
病程相关蛋白 | TaLTP5 | Lipid transfer protein | [ |
TaLTP‑B | Lipid transfer protein | [ | |
pKM1 | α‑1‑purothionin | [ | |
孤儿蛋白 | TaFROG | Fusarium Resistance Orphan Gene | [ |
ABC转运蛋白 | TaABCC3 | ATP‑binding cassette (ABC) family C transporter | [ |
TaPDR7 | Pleiotropic drug resistance | [ | |
钙离子信号通路 | TaCBRLK | Calcium binding protein receptor kinase | [ |
抗病相关转录因子 | TaPIEP1 | Pathogen‑induced ethylene‑responsive factor | [ |
TaNACL‑D1 | NAC‑like transcription factor | [ | |
TaWRKY45 | WRKY transcription factors | [ | |
TaWRKY70 | WRKY transcription factors | [ | |
抗DON毒素相关基因 | Ddna | Cytochrome P450 | [ |
EIN2 | Ethylene Insensitive 2 | [ | |
TaRht‑B1b | Gibberellic acid sensitive DELLA protein | [ | |
TaRht‑D1b | |||
TaMetRS | Methionyl‑tRNA synthetase | [ | |
ScPDR5 | Multi‑drug resistance ABC transporter | [ | |
TaABCC3.1 | [ | ||
DOGT1 | UDP‑glucosyltransferase | [ | |
TaUGT3 | [ | ||
HvUGT13248 | [ | ||
Bradi5g02780 | [ | ||
Bradi5g03300 | [ | ||
TaUGT12887 | [ | ||
Ta‑UGT3 | [ | ||
TaUGT5 | [ | ||
Traes_2BS_14CA35D5D | [ | ||
Fhb7 | Glutathione S‑transferase | [ | |
WFhb1‑1 | A putative membrane protein | [ |
表1 小麦抗赤霉病相关基因
Table 1 The genes for wheat resistance to FHB
分类 | 基因名称 | 基因描述 | 参考文献 |
---|---|---|---|
细胞壁相关基因 | TaPRP3 | Proline‑rich proteins | [ |
TaPGIP | Polygalacturonase‑inhibiting protein | [ | |
Chitinase | [ | ||
WAK2 | B‑1,3‑glucanase | ||
Wall‑associated receptor‑like kinase | [ | ||
水杨酸信号路径 | TaNPR1 | Non‑expresser of PR | [ |
TaNPR2 | Non‑expresser of PR | [ | |
TaNPR3 | Non‑expresser of PR | ||
TaICS | Isochorismate synthase | ||
TaTGA2 | B‑ZIP transcription factors | [ | |
TaSSI2 | Stearoyl‑acyl carrier protein fatty acid desaturase | [ | |
茉莉酸信号路径 | TaAOC | Allene oxide cyclase | [ |
TaAOS | Allene oxide synthase | ||
TaOPR3 | 12‑oxophytodienoic acid reductase | ||
生长素信号路径 | TaTIR1 | Transport inhibitor response | [ |
Fhb1 | PFT | Pore‑forming toxin‑like | [ |
HIS | Histidine‑rich calcium‑binding‑protein gene | [ | |
类苯基丙烷代谢途径 | TaACT | Agmatine coumaroyl transferase | [ |
病程相关蛋白 | TaLTP5 | Lipid transfer protein | [ |
TaLTP‑B | Lipid transfer protein | [ | |
pKM1 | α‑1‑purothionin | [ | |
孤儿蛋白 | TaFROG | Fusarium Resistance Orphan Gene | [ |
ABC转运蛋白 | TaABCC3 | ATP‑binding cassette (ABC) family C transporter | [ |
TaPDR7 | Pleiotropic drug resistance | [ | |
钙离子信号通路 | TaCBRLK | Calcium binding protein receptor kinase | [ |
抗病相关转录因子 | TaPIEP1 | Pathogen‑induced ethylene‑responsive factor | [ |
TaNACL‑D1 | NAC‑like transcription factor | [ | |
TaWRKY45 | WRKY transcription factors | [ | |
TaWRKY70 | WRKY transcription factors | [ | |
抗DON毒素相关基因 | Ddna | Cytochrome P450 | [ |
EIN2 | Ethylene Insensitive 2 | [ | |
TaRht‑B1b | Gibberellic acid sensitive DELLA protein | [ | |
TaRht‑D1b | |||
TaMetRS | Methionyl‑tRNA synthetase | [ | |
ScPDR5 | Multi‑drug resistance ABC transporter | [ | |
TaABCC3.1 | [ | ||
DOGT1 | UDP‑glucosyltransferase | [ | |
TaUGT3 | [ | ||
HvUGT13248 | [ | ||
Bradi5g02780 | [ | ||
Bradi5g03300 | [ | ||
TaUGT12887 | [ | ||
Ta‑UGT3 | [ | ||
TaUGT5 | [ | ||
Traes_2BS_14CA35D5D | [ | ||
Fhb7 | Glutathione S‑transferase | [ | |
WFhb1‑1 | A putative membrane protein | [ |
图1 小麦抗赤霉病分子调控网络注:F.g—禾谷镰孢菌;SA—水杨酸;Auxin—生长素;JA—茉莉酸;DON—脱氧雪腐镰刀菌烯醇;ROS—活性氧簇;HR—过敏性反应;PR—病程相关蛋白;PAL—苯丙氨酸解氨酶;PTAL—苯丙氨酸/酪氨酸解氨酶;ANR—花青素还原酶;ANS—花青素合成酶;CHI—查尔酮异构酶;CYP75B1—类黄酮3'单加氧酶;FLS—黄酮醇合成酶;JAR—茉莉酸-氨基合成酶;JAZ—茉莉酸ZIM结构域含蛋白;LOX—脂氧合酶;AAO—吲哚?3?乙醛氧化酶;ACC—1?氨基环丙烷?1?羧酸;ALDH—醛脱氢酶;AOC—烯氧化环化酶;AOS—氢过氧化物脱水酶;OPR—氧化二烯酸还原酶;TAA1—L?色氨酸-丙酮酸氨基转移酶;TRP3—邻氨基苯甲酸合成酶;TRPA—色氨酸合成酶α链;TRPD—邻氨基苯甲酸磷酸核糖基转移酶;TYNA—伯胺氧化酶;YUCCA—吲哚?3?丙酮酸单加氧酶;ARF—生长素响应因子;ARG—精氨酸酶;AROA—3?磷酸莽草酸1?羧乙烯基转移酶;AROK—莽草酸激酶;GH3—生长素响应GH3基因家族;IAA—生长素-响应蛋白;ODC1—鸟氨酸脱羧酶;PAO—多胺氧化酶;ARD—精氨酸脱羧酶;SPE—亚精胺合成酶。
Fig.1 Molecular network for wheat resistance to FHB
1 | SAVARY S, WILLOCQUET L, PETHYBRIDGE S, et al.. The global burden of pathogens and pests on major food crop [J]. Nat. Ecol. Evol., 2019, 3(3): 430-439. |
2 | 马忠华,尹燕妮,陈云.小麦赤霉病发生规律及其防控技术研究进展[C]//陈万权主编.植保科技创新与农业精准扶贫—中国植物保护学会2016 年学术年会论文集.北京:中国农业科学技术出版社,2016,29. |
3 | CHEN Y, CORBY K H, MA Z H. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management [J]. Annu. Rev. Phytopathol., 2019, 57:15-39. |
4 | 刘万才,刘振东,黄冲,等.近10年农作物主要病虫害发生危害情况的统计和分析[J].植物保护,2016,42(5):1-9. |
5 | 金艳,刘付领,朱统泉,等.河南省小麦赤霉病的发生情况分析与防治对策[J].河南科技学院学报,2016,44(6):1-4. |
6 | 朱展望,徐登安,程顺和,等.中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源[J].作物学报,2018,44(4):473-482. |
7 | MA Z, XIE Q, LI G, et al.. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight [J]. Theor. Appl. Genet., 2020, 133(2):1541-1568. |
8 | RAWAT N, PUMPHREY M O, LIU S, et al.. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight [J]. Nat. Genet., 2016, 48(12):1576-1580. |
9 | SU Z, BERNARDO A, TIAN B, et al.. A deletion mutation in TaHRC confers Fhb1 resistance toFusarium head blight in wheat [J]. Nat. Genet., 2019, 51(7):1099-1105. |
10 | LI G Q, ZHOU J Y, JIA H Y, et al.. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight [J]. Nat. Genet., 2019, 51(7):1106-1112. |
11 | WANG H, SUN S, GE W, et al.. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat [J/OL]. Science, 2020, 368(6493):eaba5435[2021-08-05]. . |
12 | KAZAN K, GARDINER D M. Transcriptomics of cereal-Fusarium graminearum interactions: what we have learned so far [J]. Mol. Plant. Pathol., 2018, 19(3):764-778. |
13 | SU P S, ZHAO L F, LI W, et al.. Integrated metabolo-transcriptomics and functional characterization reveals that the wheat auxin receptor TIR1 negatively regulates defense against Fusarium graminearum [J]. J. Integr. Plant. Biol., 2021, 63(2):340-352. |
14 | WANG B, LI X F, CHEN W Y, et al.. Isobaric tags for relative and absolute quantification-based proteomic analysis of defense responses triggered by the fungal pathogen Fusarium graminearum in wheat [J/OL]. J. Proteom., 2019, 207:103442. . |
15 | 赵兰飞.小麦赤霉病 II 型抗性机理研究及相关基因的功能鉴定[D].山东:山东农业大学,博士学位论文,2016. |
16 | PERLIKOWSKI D, WIŚNIEWSKA H, GÓRAL T, et al.. Identification of kernel proteins associated with the resistance toFusarium head blight in winter wheat (Triticum aestivum L.) [J/OL]. PLoS ONE, 2014, 9:e110822[2021-08-05]. . |
17 | ZANTINGE J, KUMAR K, XI K, et al.. Comparison of barley seed proteomic profiles associated with Fusarium head blight reaction [J]. Can. J. Plant Pathol., 2010, 32(4):496-512. |
18 | HÜCKELHOVEN R. Cell wall-associated mechanisms of disease resistance and susceptibility [J]. Annu. Rev. Phytopathol., 2007, 45(1):101-127. |
19 | BELLINCAMPI D, CERVONE F, LIONETTI V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions [J/OL]. Front. Plant Sci., 2014, 5:228[2021-08-05]. . |
20 | SÁNCHEZ-RODRÍGUEZ C, ESTÉVEZ J M, LLORENTE F, et al.. The ERECTA receptor-like kinase regulates cell wall-mediated resistance to pathogens in Arabidopsis thaliana [J]. Mol. Plant Microbe. Interact., 2009, 22(8):953-963. |
21 | LLORENTE F, ALONSO-BLANCO C, SANCHEZ-RODRIGUEZ C, et al.. ERECTA receptor-like kinase and heterotrimeric g protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina [J]. Plant J., 2005, 43(2):165-180. |
22 | 陈启广.小麦抗赤霉病相关基因TaUGT3和TaPRP转化普通小麦的研究[D].南京:南京农业大学,硕士学位论文, 2013. |
23 | GEDDES J, EUDES F, LAROCHE A, et al.. Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, hordeum vulgare [J]. Proteomics, 2010, 8(3):545-554. |
24 | 魏芳,马鸿翔.小麦中一个ADF基因克隆与表达分析[J].分子植物育种,2011,9(5):554-560. |
25 | KRISTEN A H, ALAN B. Polygalacturonases: many genes in search of a function [J]. Plant Physiol., 1998, 117(2):337-343. |
26 | BÉZIER A, LAMBERT B,BAILLIEUL F. Cloning of a grapevine Botrytis-responsive gene that has homology to the tobacco hypersensitivity-related hsr203 [J]. J. Exp. Bot., 2002, 53(378):2279-2280. |
27 | FEDERICI L, MATTEO A D, FERNANDEZ-RECIO J, et al.. Polygalacturonase inhibiting proteins: players in plant innate immunity? [J]. Trends Plant Sci., 2006, 11(2):65-70. |
28 | 康振生,黄丽丽,韩青梅,等.禾谷镰刀菌侵染引致小麦穗组织细胞壁成分变化的细胞化学研究[J].植物病理学报,2007,37(6):623-628. |
29 | FERRARI S, VAIRO D, AUSUBEL F M, et al.. Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection [J]. Plant Cell, 2003, 15(1):93-106. |
30 | MANFREDINI C, FREDINI C, SICILIA F, et al.. Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits bcpg1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection [J]. Physiol. Mol. Plant P., 2005, 67(2):108-115. |
31 | 党良.植物抗菌蛋白GmPGIP3和BvGLP1转基因小麦的分子检测和抗病性鉴定[D].河北:河北农业大学,硕士学位论文,2012. |
32 | 侯文倩.小麦赤霉病抗病相关基因的分离鉴定及BSMV-VIGS功能验证[D].山东:山东农业大学,博士学位论文,2014. |
33 | 李祥义.小麦抗赤霉病机理及生理指标研究[D].南京:南京农业大学,博士学位论文, 1987. |
34 | PIETERSE C, LEON-REYES A, Ent S V, et al.. Networking by small-molecule hormones in plant immunity [J]. Nat. Chem. Biol., 2009, 5(5):308-316. |
35 | STEVEN S H, DONG X N. Making sense of hormone crosstalk during plant immune responses [J]. Cell Host Microbe, 2008, 3(6):348-351. |
36 | KACHROO A, KACHROO P. Salicylic acid-, jasmonic acid- and ethylene- mediated regulation of plant defense signaling [J]. Genet. Eng., 2007, 28:55-83. |
37 | KOORNNEEF A, PIETERSE C M. Cross talk in defense signaling [J]. Plant Physiol., 2008, 146(3):839-844. |
38 | QIU D Y, XIAO J, DING X H, et al.. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling [J]. Mol. Plant Microbe interact, 2007, 20(5):492-499. |
39 | MAKANDAR R, NALAM V J, LEE H, et al.. Salicylic acid regulates basal resistance toFusarium head blight in wheat [J]. Mol. Plant Microbe interact, 2012, 25(3):431-439. |
40 | LORENZO O, PIQUERAS R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense [J]. Plant Cell, 2003, 15(1):165-178. |
41 | WANG L, LI Q, LIU Z, et al.. Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against Fusarium head blight [J/OL]. PLoS ONE, 2018, 13(11):e0207036[2021-08-05]. . |
42 | BONIGHAUSEN J, SCHAUER N, SCHAER W, et al.. Metabolic profiling of wheat rachis node infection by Fusarium graminearum-decoding deoxynivalenol-dependent susceptibility [J]. New Phytol, 2019, 221(1):459-469. |
43 | WANG D, PAJEROWSKA-MUKHTAR K, CULLER A H, et al.. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway [J]. Curr. Biol., 2007, 17(20):1784-1790. |
44 | ROBERT-SEILANIANTZ A, GRANT M, JONES J D. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism [J]. Annu. Rev. Phytopathol., 2011, 49:317-343. |
45 | QI P, BALCERZAK M, ROCHELEAU H, et al.. Jasmonic acid and abscisic acid play important roles in host-pathogen interaction between Fusarium graminearum and wheat during the early stages of Fusarium head blight [J]. Physiol. Mol. Plant Pathol., 2016, 93:39-48. |
46 | DING L, XU H, YI H, et al.. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways [J/OL]. PLoS ONE, 2011, 6:e19008[2021-08-05]. . |
47 | SU P S, GUO X X, FAN Y H, et al.. Application of Brachypodium genotypes to the analysis of type II resistance to Fusarium head blight (FHB) [J]. Plant Sci., 2018, 272:255-266. |
48 | FAN Y, HOU B, SU P, et al.. Application of virus-induced gene silencing (VIGS) for identification of FHB resistant genes [J]. J. Integr. Agric., 2019, 18(10):2183-2192. |
49 | KINKEMA M, FAN W, DONG X. Nuclear localization of NPR1 is required for activation of PR gene expression [J]. Plant Cell, 2000, 12(12):2339-2350. |
50 | SPOEL S H, KOORNNEEF A, CLAESSENS S M, et al.. NPR1 modulates cross-talk between salicylate- and jasmonate- dependent defense pathways through a novel function in the cytosol [J]. Plant Cell, 2003, 15:760-770. |
51 | VERONESE P, NAKAGAMI H, BLUHM B, et al.. The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens [J]. Plant Cell, 2006, 18(1):257-273. |
52 | PRÉ M, ATALLAH M, CHAMPION A, et al.. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense [J]. Plant Physiol., 2008, 147(3):1347-1357. |
53 | THAPA G, GUNUPURU L R, HEHIR J G, et al.. A pathogen-responsive leucine rich receptor like kinase contributes to Fusarium resistance in cereals [J/OL]. Front. Plant Sci., 2018, 9:867[2021-08-05]. . |
54 | REDDY A, CALER E V, ANDREWS N W. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes [J]. Cell, 2001, 106(2):157-169. |
55 | SNEDDEN W A, FROMM H. Calmodulin as a versatile calcium signal transducer in plants [J]. New Phytol., 2001, 151(1):35-66. |
56 | WANG Y, WEI F, ZHOU H, et al.. TaCAMTA4, a calmodulin-interacting protein, involved in defense response of wheat to Puccinia triticina [J/OL]. Sci. Rep., 2019, 9(1):641[2021-08-05]. . |
57 | GHORBEL M, ZRIBI I, MISSAOUI K, et al.. Differential regulation of the durum wheat pathogenesis-related protein (PR1) by calmodulin TdCaM1.3 protein [J]. Mol. Biol. Rep., 2021, 48(1):347-362. |
58 | OLSON P D, VARNER J E. Hydrogen peroxide and lignification [J]. Plant J., 1993, 4(5):887-892. |
59 | BAEBLER S, WITEK K, PETEK M, et al.. Salicylic acid is an indispensable component of the Ny-1 resistancegene-mediated response against Potato virus Y infection in potato [J]. J. Exp. Bot., 2014, 65(4):1095-1109. |
60 | DESMOND O J, MANNERS J M, STEPHENS A E, et al.. The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat [J]. Mol. Plant Pathol., 2008, 9(4):435-445. |
61 | CHEN J, ZHANG W, SONG F, et al.. Phospholipase C/diacylglycerol kinase-mediated signalling is required for benzothiadiazole-induced oxidative burst and hypersensitive cell death in rice suspension-cultured cells [J]. Protoplasma, 2007, 230(1-2):13-21. |
62 | NAM K H, LI J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling [J]. Cell, 2002, 110(2):203-212. |
63 | LI J, CHORY J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction [J]. Cell, 1997, 90(5):929-938. |
64 | GÓMEZ-GÓMEZ L, BOLLER T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis [J]. Mol. Cell, 2000, 5(6):1003-1011. |
65 | JIANG C, HEI R, YANG Y, et al.. An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α [J/OL]. Nat. Commun., 2020, 11(1):4382[2021-08-05]. . |
66 | PRITSCH C, MUEHLBAUER G J, BUSHNELL W R, et al.. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum [J]. Mol. Plant Microbe Interact, 2000, 13(2):159-169. |
67 | CHENG W, LI H P, ZHANG J B, et al.. Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins [J]. Plant Biotechnol. J., 2015, 13(5):664-674. |
68 | SHIN S, MACKINTOSH C A, LEWIS J, et al.. Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum [J]. J. Exp. Bot., 2008, 59(9):2371-2378. |
69 | MACKINTOSH C A, LEWIS J, RADMER L E, et al.. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight [J]. Plant Cell Rep., 2007, 26(4):479-488. |
70 | WALTER S, KAHLA A, ARUNACHALAM C, et al.. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance [J]. J. Exp. Bot., 2015, 66(9):2583-2593. |
71 | HAN J, LAKSHMAN D K, GALVEZ L C, et al.. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum [J/OL]. BMC. Plant Biol., 2012, 12(1):33[2021-08-05]. . |
72 | ZHU X L, LI Z, XU H J, et al.. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistance to Cochilobolus sativus and Fusarium graminearum in transgenic wheat [J]. Funct. Integr. Genomic., 2012, 12:481-488. |
73 | 刘欣,蔡士宾,张伯桥,等.抗纹枯病、赤霉病的转TaPIEP1基因小麦的分子鉴定与选育[J].作物学报,2011,37(7):1144-1150. |
74 | PEROCHON A, KAHLA A, VRANIĆ M, et al.. A wheat NAC interacts with an orphan protein and enhances resistance to Fusarium Head Blight disease [J]. Plant Biotechnol. J., 2019, 17(10):1892-1904. |
75 | BAHRINI I, SUGISAWA M, KIKUCHI R, et al.. Characterization of a wheat transcription factor, TaWRKY45, and its effect on Fusarium head blight resistance in transgenic wheat plants [J]. Breeding Sci., 2011, 61(2):121-129. |
76 | KAGE U, YOGENDRA K N, KUSHALAPPA A C. Tawrky70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike [J/OL]. Sci. Rep., 2017, 7:42596[2021-08-05]. . |
77 | WANG R, CHEN J, ANDERSON J A, et al.. Genome-wide association mapping of Fusarium head blight resistance in spring wheat lines developed in the pacific northwest and cimmyt [J]. Phytopathology, 2017, 107(12):1486-1495. |
78 | ZHAO M X, LENG Y Q, CHAO S M, et al.. Molecular mapping of QTL for Fusarium head blight resistance introgressed into durum wheat [J]. Theor. Appl. Genet., 2018, 131(9):1939-1951. |
79 | HE X Y, DREISIGACKER S, SINGH R P, et al.. Genetics for low correlation between Fusarium head blight disease and deoxynivalenol (DON) content in a bread wheat mapping population [J]. Theor. Appl. Genet., 2019, 132(8):2401-2411. |
80 | OKUBARA P A, BLECHL A E, MCCORMICK S P, et al.. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene [J]. Theor. Appl. Genet., 2002, 106:74-83. |
81 | LI X, SHIN S, HEINEN S, et al.. Transgenic wheat expressing a barley udp-glucosyltransferase detoxifies deoxynivalenol and provides high levels of resistance to Fusarium graminearum [J]. Mol. Plant Microbe Interact, 2015, 28(11):1237-1246. |
82 | LI X, MICHLMAYR H, SCHWEIGER W, et al.. A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium head blight resistance in transgenic wheat [J]. J. Exp. Bot., 2017, 68(9):2187-2197. |
83 | MA X, DU X Y, LIU G J, et al.. Cloning and characterization of a novel udp-glycosyltransferase gene induced by DON from wheat [J]. J. Integr. Agric., 2015, 14(5):830-838. |
84 | PASQUET J C, CHANGENET V, MACADRÉ C, et al.. A brachypodium UDP- glycosyltran- sferase confers root tolerance to deoxynivalenol and resistance to Fusarium infection [J]. Plant Physiol., 2016, 172(1):559-574. |
85 | GATTI M, CHOULET F, MACADRÉ C, et al.. Identification, cloningmolecular, and functional characterization of a wheat UDP-glucosyltransferase involved in resistance to Fusarium Head Blight and to mycotoxin accumulation [J/OL]. Front. Plant Sci., 2018, 9:1853[2021-08-05]. . |
86 | XING L P, GAO L, CHEN Q G, et al.. Over-expressing a udp-glucosyltransferase gene (Ta-UGT3) enhances Fusarium head blight resistance of wheat [J]. Plant Growth Regul., 2018, 84(3):561-571. |
87 | ZHAO L F, MA X, SU P S, et al.. Cloning and characterization of a specific udp-glycosyltransferase gene induced by don and Fusarium graminearum [J]. Plant Cell Rep., 2018, 37(4):641-652. |
88 | KONG L, ANDERSON J M, OHM H W. Induction of wheat defense and stress-related genes in response to Fusarium graminearum [J]. Genome, 2005, 48(1):29-40. |
89 | 马璐琳.普通小麦品种望水白中DON诱导上调表达UDP-葡萄糖基转移酶基因的克隆及功能分析[D].江苏:南京农业大学,博士学位论文,2009. |
90 | KARRE S, KUMAR A, YOGENDRA K, et al.. Hvwrky23 regulates flavonoid glycoside and hydroxycinnamic acid amide biosynthetic genes in barley to combat Fusarium head blight [J]. Plant Mol. Biol., 2019, 100:591-605. |
91 | ANAND A, ZHOU T, TRICK H N, et al.. Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum [J]. J. Exp. Bot., 2003, 54(384):1101-1111. |
92 | GADALETA A, COLASUONNO P, GIOVE S L, et al.. Map-based cloning of QFhb.mgb-2identifies a WAKA2 gene responsible for Fusarium Head Blight resistance in wheat [J/OL]. Sci. Rep., 2019, 9:6929[2021-08-05]. . |
93 | 吴洪燕.利用BSMV-VIGS技术鉴定SA路径相关基因抗小麦赤霉病的功能[D].山东:山东农业大学,硕士学位论文,2016. |
94 | KAGE U, KARRE S, KUSHALAPPA A C, et al.. Identification and characterization of a Fusarium head blight resistance gene TaACT in wheat QTL-2DL [J]. Plant Biotechnol. J., 2017, 15(4):447-457. |
95 | 贾新平.基于基因芯片技术的小麦品种望水白抗赤霉病表达谱分析及一个非特异性脂转移蛋白基因的克隆[D].江苏:南京农业大学,博士学位论文,2012. |
96 | ITO M, SATO I, ISHIZAKA M, et al.. Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol [J]. Appl. Environ. Microbiol., 2013, 79(5):1619-1628. |
97 | CHEN X, STEED A, TRAVELLA S, et al.. Fusarium graminearum exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants [J]. New Phytol., 2009, 182(4):975-983. |
98 | SAVILLE R, GOSMAN N, BURT C, et al.. The 'Green Revolution'dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare [J]. J. Exp. Bot., 2012, 63(3):1271-1283. |
99 | ZUO D Y, YI S Y, LIU R J, et al.. A deoxynivalenol-activated methionyl-tRNA synthetase gene from wheat encodes a nuclear localized protein and protects plants against Fusarium pathogens and mycotoxins [J]. Phytopathology, 2016, 106(6):614-623. |
100 | MITTERBAUER R, ADAM G. Saccharomyces cerevisae and Arabidopsis thaliana: useful model systems for the identification of molecular mechanisms involved in resistance of plants to toxins [J]. Eur. J. Plant Pathol., 2002, 108:699-703. |
101 | POPPENBERGER B, BERTHILLER F, LUCYSHYN D, et al.. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana [J]. J. Biol. Chem., 2003, 278(48):47905-47914. |
102 | MA L, SHANG Y, CAO A, et al.. Molecular cloning and characterization of an upregulated UDP-glucosyltransferase gene induced by DON from Triticum aestivum L. cv. Wangshuibai [J]. Mol. Biol. Rep., 2010, 37:785-795. |
103 | SHIN S, TORRES A, HEINEN S J, et al.. Transgenic Arabidopsis thaliana expressing a barley UDP-glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol [J]. J. Exp. Bot., 2012, 63(13):4731-4740. |
104 | SCHWEIGER W, PASQUET J C, NUSSBAUMER T, et al.. Functional characterization of two clusters of Brachypodium distachyon UDP-glycosyltransferases encoding putative deoxynivalenol detoxification genes [J]. Mol. Plant-Microbe Interact, 2013, 26(7):781-792. |
105 | SCHWEIGER W, STEINER B, AMETZ C, et al.. Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs. Ifa-5A, identifies novel candidate genes [J]. Mol. Plant Pathol., 2013, 14(8):772-785. |
106 | PAUDEL B, ZHUANG Y, GALLA A, et al.. WFhb1-1 plays an important role in resistance against Fusarium head blight in wheat [J/OL]. Sci. Rep., 2020, 10(1):7794[2021-08-05]. . |
107 | 苏培森,葛文扬,王宏伟,等.小麦-禾谷镰孢菌互作机制的研究进展[J].中国科学:生命科学,2021,doi:10.1360/SSV-2020-0355. |
[1] | 曹巧, 史占良, 张国丛, 班进福, 郑树松, 傅晓艺, 张士昌, 何明琦, 韩然, 高振贤. CRISPR/Cas9技术在小麦育种中的应用进展[J]. 生物技术进展, 2021, 11(6): 661-667. |
[2] | 咸莉梅, 胡怡, 李磊, 孙政玺, 何心尧, 李韬. 浅议小麦赤霉病抗性类型与鉴定方法的对应性[J]. 生物技术进展, 2021, 11(5): 554-559. |
[3] | 肖进, 程怡璠, 宋融融, 孙丽, 王宗宽, 袁春霞, 王海燕, 王秀娥. 小麦抗赤霉病外源种质的创制和育种利用[J]. 生物技术进展, 2021, 11(5): 560-566. |
[4] | 王仪威, 冯祎高, 刘润然, 卢春甜, 曹爱忠, 张瑞奇. 小麦-鹅观草第一部分同源群染色体渗入系鉴定与基因组归属分析[J]. 生物技术进展, 2021, 11(5): 567-573. |
[5] | 王永刚, 张旭, 张鹏, 马鸿翔. 植物细胞工程在小麦抗赤霉病育种中的应用[J]. 生物技术进展, 2021, 11(5): 574-580. |
[6] | 翟文玲, 刘彩云, 刘颖, 付必胜, 蔡瑾, 郭炜, 张巧凤, 吴纪中. 小麦赤霉病新抗源的发掘与抗性位点的检测分析[J]. 生物技术进展, 2021, 11(5): 581-589. |
[7] | 张勇, 胡文静, 张春梅, 蒋正宁, 吕国峰, 高德荣. 我国“十三五”育成小麦新品种(系)抗赤霉病进展分析与展望[J]. 生物技术进展, 2021, 11(5): 590-598. |
[8] | 李东翱, 刘慧泉, 王秦虎. 小麦响应禾谷镰刀菌侵染的转录组学研究进展[J]. 生物技术进展, 2021, 11(5): 610-617. |
[9] | 段凯莉, 江聪, 王光辉. 禾谷镰刀菌蛋白激酶研究进展[J]. 生物技术进展, 2021, 11(5): 618-627. |
[10] | 刘家俊, 陈琛, 温明星, 郭瑞, 姚维成, 李东升. 基于共表达网络和蛋白互作分析挖掘小麦赤霉病抗性相关核心蛋白[J]. 生物技术进展, 2021, 11(5): 628-633. |
[11] | 阮双, 司红起. 小麦DON毒素研究进展[J]. 生物技术进展, 2021, 11(5): 634-641. |
[12] | 李兵, 梁晋刚, 朱育攀, 王御琦, 焦浈. 我国小麦赤霉病成灾原因分析及防控策略探讨[J]. 生物技术进展, 2021, 11(5): 647-652. |
[13] | 孙政玺, 胡思嘉, 周益雷, 胡怡, 江宁, 李磊, 李韬. sRNA的研究概述及其在小麦赤霉病防治中的应用展望[J]. 生物技术进展, 2021, 11(5): 653-659. |
[14] | 方汉顺,,谢永盾,曾伟伟,郭会君,熊宏春,赵林姝,古佳玉,徐延浩,刘录祥. 小麦矮秆突变体jm22d响应赤霉素处理的转录组学分析[J]. 生物技术进展, 2020, 10(5): 503-516. |
[15] | 吴迪,,郑彤,李磊,李韬. 小麦全基因组抗赤霉病QTL关联位点特异性SSR标记的筛选、等位变异及效应解析[J]. 生物技术进展, 2020, 10(3): 242-250. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1101
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1910
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 2021《生物技术进展》编辑部