生物技术进展 ›› 2025, Vol. 15 ›› Issue (3): 518-525.DOI: 10.19586/j.2095-2341.2025.0006
高晓晶(), 张祝兰(
), 林仙菊, 邱观荣, 温耀明, 范建辉, 黄洪祥
收稿日期:
2025-01-20
接受日期:
2025-02-28
出版日期:
2025-05-25
发布日期:
2025-07-01
通讯作者:
张祝兰
作者简介:
高晓晶 E-mail: tju_gaoxiaojing@163.com;
基金资助:
Xiaojing GAO(), Zhulan ZHANG(
), Xianju LIN, Guanrong QIU, Yaoming WEN, Jianhui FAN, Hongxiang HUANG
Received:
2025-01-20
Accepted:
2025-02-28
Online:
2025-05-25
Published:
2025-07-01
Contact:
Zhulan ZHANG
摘要:
环孢菌素A(cyclosporin A,CsA)作为一种兼具免疫抑制、抗菌、抗炎等多种生物活性的次级代谢产物,在临床治疗和生物医药领域具有重要的应用价值。为了进一步提升CsA的发酵含量,以单因素试验为基础,采用Plackett-Burman设计、中心组合(central composite,CCD)设计及响应面分析法(response surface analysis,RSM)获取最优发酵条件。结果表明,玉米浆粉、硫酸铵、葡萄糖的含量及发酵时间对CsA的生物合成具有显著影响,最终确定适配的培养基组成为8.0%麦芽糊精、6.88%玉米浆粉、0.15%酵母浸粉、0.18%硫酸铵、0.61%葡萄糖和0.1% PEG200,最适的发酵温度和时间为24 ℃,和10.8 d。经发酵工艺优化后,CsA的发酵含量达11.76 mg·mL-1,较初始条件提高了47.95%。研究结果可为该菌株的工艺放大提供重要的理论依据和技术参数。
中图分类号:
高晓晶, 张祝兰, 林仙菊, 邱观荣, 温耀明, 范建辉, 黄洪祥. 基于响应面法优化环孢菌素A发酵工艺的研究[J]. 生物技术进展, 2025, 15(3): 518-525.
Xiaojing GAO, Zhulan ZHANG, Xianju LIN, Guanrong QIU, Yaoming WEN, Jianhui FAN, Hongxiang HUANG. Optimization of Fermentation Culture Conditions for Cyclosporine A Using Response Surface Method[J]. Current Biotechnology, 2025, 15(3): 518-525.
编码 | 组分 | 水平 | |
---|---|---|---|
-1 | 1 | ||
A | 玉米浆粉/% | 3 | 6 |
B | 麦芽糊精/% | 8 | 14 |
C | 葡萄糖/% | 0.5 | 1.5 |
D | 酵母浸粉/% | 0.1 | 0.2 |
E | PEG200/% | 0.1 | 0.5 |
F | 发酵时间/% | 7 | 10 |
G | 硫酸铵/% | 0.1 | 1.0 |
H | 发酵温度/℃ | 24 | 26 |
表1 PBD试验中各变量设计
Table 1 The design of each variable in the PBD experiment
编码 | 组分 | 水平 | |
---|---|---|---|
-1 | 1 | ||
A | 玉米浆粉/% | 3 | 6 |
B | 麦芽糊精/% | 8 | 14 |
C | 葡萄糖/% | 0.5 | 1.5 |
D | 酵母浸粉/% | 0.1 | 0.2 |
E | PEG200/% | 0.1 | 0.5 |
F | 发酵时间/% | 7 | 10 |
G | 硫酸铵/% | 0.1 | 1.0 |
H | 发酵温度/℃ | 24 | 26 |
因素 | 编码 | 水平 | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
玉米浆粉/% | X1 | 4 | 6 | 8 |
硫酸铵/% | X2 | 0.1 | 0.2 | 0.3 |
发酵时间/d | X3 | 9 | 10 | 11 |
葡萄糖/% | X4 | 0.4 | 0.6 | 0.8 |
表2 CCD试验因素设计
Table 2 Factor design of the CCD experiment
因素 | 编码 | 水平 | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
玉米浆粉/% | X1 | 4 | 6 | 8 |
硫酸铵/% | X2 | 0.1 | 0.2 | 0.3 |
发酵时间/d | X3 | 9 | 10 | 11 |
葡萄糖/% | X4 | 0.4 | 0.6 | 0.8 |
图1 培养基组成对CsA含量的影响A:碳源;B:氮源;C:无机盐;D:表面活性剂;*、**分别表示与未标*组相比,在P<0.05和P<0.01水平上具有统计学意义。
Fig. 1 The influence of compositions of media on the content of CsA
编号 | A | B | C | D | E | F | G | H | CsA含量/(mg·mL-1) |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 5.42 |
2 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 6.69 |
3 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 6.53 |
4 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 5.63 |
5 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 7.45 |
6 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 6.91 |
7 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 7.65 |
8 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 6.19 |
9 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 7.10 |
10 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 11.44 |
11 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 10.89 |
12 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 7.02 |
表3 PBD试验设计与结果
Table 3 PBD experimental design and results
编号 | A | B | C | D | E | F | G | H | CsA含量/(mg·mL-1) |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 5.42 |
2 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 6.69 |
3 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 6.53 |
4 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 5.63 |
5 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 7.45 |
6 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 6.91 |
7 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 7.65 |
8 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 6.19 |
9 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 7.10 |
10 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 11.44 |
11 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 10.89 |
12 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 7.02 |
来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 37.39 | 8 | 4.67 | 9.87 | 0.043 |
A-玉米浆粉 | 9.32 | 1 | 9.32 | 19.68 | 0.021 3 |
B-麦芽糊精 | 4.36 | 1 | 4.36 | 9.22 | 0.056 |
C-葡萄糖 | 6.39 | 1 | 6.39 | 13.49 | 0.034 9 |
D-酵母浸粉 | 1.91 | 1 | 1.91 | 4.03 | 0.138 4 |
E-PEG200 | 0.045 4 | 1 | 0.045 4 | 0.095 8 | 0.777 2 |
F-发酵时间 | 8.18 | 1 | 8.18 | 17.27 | 0.025 3 |
G-硫酸铵 | 6.13 | 1 | 6.13 | 12.94 | 0.036 8 |
H-发酵温度 | 1.06 | 1 | 1.06 | 2.24 | 0.231 4 |
残差 | 1.42 | 3 | 0.473 5 | ||
总和 | 38.81 | 11 |
表4 PBD方差分析
Table 4 Analysis of variance in PBD
来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 37.39 | 8 | 4.67 | 9.87 | 0.043 |
A-玉米浆粉 | 9.32 | 1 | 9.32 | 19.68 | 0.021 3 |
B-麦芽糊精 | 4.36 | 1 | 4.36 | 9.22 | 0.056 |
C-葡萄糖 | 6.39 | 1 | 6.39 | 13.49 | 0.034 9 |
D-酵母浸粉 | 1.91 | 1 | 1.91 | 4.03 | 0.138 4 |
E-PEG200 | 0.045 4 | 1 | 0.045 4 | 0.095 8 | 0.777 2 |
F-发酵时间 | 8.18 | 1 | 8.18 | 17.27 | 0.025 3 |
G-硫酸铵 | 6.13 | 1 | 6.13 | 12.94 | 0.036 8 |
H-发酵温度 | 1.06 | 1 | 1.06 | 2.24 | 0.231 4 |
残差 | 1.42 | 3 | 0.473 5 | ||
总和 | 38.81 | 11 |
编号 | 玉米浆粉/% | 葡萄糖/% | 硫酸铵/% | 发酵时间/d | CsA含量/(mg·mL-1) |
---|---|---|---|---|---|
1 | 3 | 1.2 | 0.3 | 7 | 8.48 |
2 | 4 | 1.0 | 0.25 | 8 | 10.66 |
3 | 5 | 0.8 | 0.2 | 9 | 10.90 |
4 | 6 | 0.6 | 0.20 | 10 | 11.53 |
5 | 7 | 0.4 | 0.15 | 11 | 8.62 |
6 | 8 | 0.2 | 0.10 | 12 | 6.69 |
7 | 9 | 0 | 0.05 | 13 | 6.51 |
表5 最陡爬坡试验设计及结果
Table 5 Steepest ascent experimental design and results
编号 | 玉米浆粉/% | 葡萄糖/% | 硫酸铵/% | 发酵时间/d | CsA含量/(mg·mL-1) |
---|---|---|---|---|---|
1 | 3 | 1.2 | 0.3 | 7 | 8.48 |
2 | 4 | 1.0 | 0.25 | 8 | 10.66 |
3 | 5 | 0.8 | 0.2 | 9 | 10.90 |
4 | 6 | 0.6 | 0.20 | 10 | 11.53 |
5 | 7 | 0.4 | 0.15 | 11 | 8.62 |
6 | 8 | 0.2 | 0.10 | 12 | 6.69 |
7 | 9 | 0 | 0.05 | 13 | 6.51 |
实验编号 | X1 | X2 | X3 | X4 | CsA含量/(mg·mL-1) |
---|---|---|---|---|---|
1 | 1 | 2 | -1 | 1 | 8.94 |
2 | 0 | 0 | 0 | 0 | 11.92 |
3 | -1 | 1 | -1 | 1 | 8.84 |
4 | 1 | -1 | 2 | 1 | 10.60 |
5 | 0 | 2 | 0 | 0 | 10.57 |
6 | -1 | -1 | 1 | 1 | 10.31 |
7 | 0 | -2 | 0 | 0 | 10.12 |
8 | -2 | 0 | 0 | 0 | 7.12 |
9 | 0 | 0 | 0 | 0 | 11.93 |
10 | -1 | 1 | 1 | 1 | 9.59 |
11 | 2 | 0 | 0 | 0 | 7.87 |
12 | 1 | -1 | -1 | -1 | 9.65 |
13 | 0 | 0 | -2 | 0 | 8.75 |
14 | 1 | 1 | 1 | -1 | 10.14 |
15 | 0 | 0 | 0 | -2 | 10.04 |
16 | 0 | 0 | 0 | 0 | 11.77 |
17 | 0 | 0 | 0 | 0 | 11.30 |
18 | -1 | -1 | -1 | -1 | 9.71 |
19 | -1 | 1 | -1 | -1 | 9.57 |
20 | -1 | -1 | 1 | -1 | 10.50 |
21 | 1 | -1 | 1 | -1 | 10.92 |
22 | 0 | 0 | 2 | 0 | 11.23 |
23 | 1 | 1 | 1 | 1 | 10.90 |
24 | -1 | -1 | -1 | 1 | 9.86 |
25 | 1 | -1 | -1 | 1 | 9.78 |
26 | 0 | 0 | 0 | 0 | 11.55 |
27 | 0 | 0 | 0 | 2 | 10.15 |
28 | 1 | 1 | -1 | -1 | 8.30 |
29 | 0 | 0 | 0 | 0 | 11.91 |
30 | -1 | 1 | 1 | -1 | 10.31 |
表6 CCD试验结果
Table 6 The results of CCD
实验编号 | X1 | X2 | X3 | X4 | CsA含量/(mg·mL-1) |
---|---|---|---|---|---|
1 | 1 | 2 | -1 | 1 | 8.94 |
2 | 0 | 0 | 0 | 0 | 11.92 |
3 | -1 | 1 | -1 | 1 | 8.84 |
4 | 1 | -1 | 2 | 1 | 10.60 |
5 | 0 | 2 | 0 | 0 | 10.57 |
6 | -1 | -1 | 1 | 1 | 10.31 |
7 | 0 | -2 | 0 | 0 | 10.12 |
8 | -2 | 0 | 0 | 0 | 7.12 |
9 | 0 | 0 | 0 | 0 | 11.93 |
10 | -1 | 1 | 1 | 1 | 9.59 |
11 | 2 | 0 | 0 | 0 | 7.87 |
12 | 1 | -1 | -1 | -1 | 9.65 |
13 | 0 | 0 | -2 | 0 | 8.75 |
14 | 1 | 1 | 1 | -1 | 10.14 |
15 | 0 | 0 | 0 | -2 | 10.04 |
16 | 0 | 0 | 0 | 0 | 11.77 |
17 | 0 | 0 | 0 | 0 | 11.30 |
18 | -1 | -1 | -1 | -1 | 9.71 |
19 | -1 | 1 | -1 | -1 | 9.57 |
20 | -1 | -1 | 1 | -1 | 10.50 |
21 | 1 | -1 | 1 | -1 | 10.92 |
22 | 0 | 0 | 2 | 0 | 11.23 |
23 | 1 | 1 | 1 | 1 | 10.90 |
24 | -1 | -1 | -1 | 1 | 9.86 |
25 | 1 | -1 | -1 | 1 | 9.78 |
26 | 0 | 0 | 0 | 0 | 11.55 |
27 | 0 | 0 | 0 | 2 | 10.15 |
28 | 1 | 1 | -1 | -1 | 8.30 |
29 | 0 | 0 | 0 | 0 | 11.91 |
30 | -1 | 1 | 1 | -1 | 10.31 |
来源 | 平方和 | 自由度 | 均方 | F值 | P值 | |
---|---|---|---|---|---|---|
模型 | 39.52 | 14 | 2.82 | 14.37 | <0.000 1 | ** |
X1-玉米浆粉 | 0.17 | 1 | 0.17 | 0.87 | 0.366 5 | |
X2-硫酸铵 | 0.62 | 1 | 0.62 | 3.14 | 0.096 7 | |
X3-发酵时间 | 7.68 | 1 | 7.68 | 39.08 | <0.000 1 | ** |
X4-葡萄糖 | 0.000 1 | 1 | 0.000 1 | 0.000 6 | 0.981 3 | |
X1X2 | 0.02 | 1 | 0.02 | 0.12 | 0.734 8 | |
X1X3 | 0.63 | 1 | 0.63 | 3.18 | 0.094 7 | |
X1X4 | 0.45 | 1 | 0.45 | 2.29 | 0.150 6 | |
X2X3 | 0.24 | 1 | 0.24 | 1.22 | 0.286 4 | |
X2X4 | 0.002 4 | 1 | 0.002 | 0.01 | 0.913 0 | |
X3X4 | 0.03 | 1 | 0.028 | 0.14 | 0.709 1 | |
X12 | 27.11 | 1 | 27.11 | 138.04 | <0.000 1 | ** |
X22 | 2.19 | 1 | 2.19 | 11.16 | 0.004 5 | ** |
X32 | 3.77 | 1 | 3.77 | 19.20 | 0.000 5 | ** |
X42 | 3.26 | 1 | 3.26 | 16.61 | 0.001 0 | ** |
残差 | 2.95 | 15 | 0.20 | |||
失拟项 | 2.62 | 10 | 0.26 | 3.96 | 0.070 9 | |
纯误差 | 0.33 | 5 | 0.066 | |||
总和 | 42.47 | 29 |
表7 回归模型方差分析
Table 7 Analysis of variance for the regression model
来源 | 平方和 | 自由度 | 均方 | F值 | P值 | |
---|---|---|---|---|---|---|
模型 | 39.52 | 14 | 2.82 | 14.37 | <0.000 1 | ** |
X1-玉米浆粉 | 0.17 | 1 | 0.17 | 0.87 | 0.366 5 | |
X2-硫酸铵 | 0.62 | 1 | 0.62 | 3.14 | 0.096 7 | |
X3-发酵时间 | 7.68 | 1 | 7.68 | 39.08 | <0.000 1 | ** |
X4-葡萄糖 | 0.000 1 | 1 | 0.000 1 | 0.000 6 | 0.981 3 | |
X1X2 | 0.02 | 1 | 0.02 | 0.12 | 0.734 8 | |
X1X3 | 0.63 | 1 | 0.63 | 3.18 | 0.094 7 | |
X1X4 | 0.45 | 1 | 0.45 | 2.29 | 0.150 6 | |
X2X3 | 0.24 | 1 | 0.24 | 1.22 | 0.286 4 | |
X2X4 | 0.002 4 | 1 | 0.002 | 0.01 | 0.913 0 | |
X3X4 | 0.03 | 1 | 0.028 | 0.14 | 0.709 1 | |
X12 | 27.11 | 1 | 27.11 | 138.04 | <0.000 1 | ** |
X22 | 2.19 | 1 | 2.19 | 11.16 | 0.004 5 | ** |
X32 | 3.77 | 1 | 3.77 | 19.20 | 0.000 5 | ** |
X42 | 3.26 | 1 | 3.26 | 16.61 | 0.001 0 | ** |
残差 | 2.95 | 15 | 0.20 | |||
失拟项 | 2.62 | 10 | 0.26 | 3.96 | 0.070 9 | |
纯误差 | 0.33 | 5 | 0.066 | |||
总和 | 42.47 | 29 |
组别 | CsA含量/(mg·mL-1) |
---|---|
初始组 | 7.95±0.72 |
预测组 | 11.87±0.18* |
验证组 | 11.76±0.47* |
表8 验证试验结果(n=5)
Table 8 Results of the verification test (n=5)
组别 | CsA含量/(mg·mL-1) |
---|---|
初始组 | 7.95±0.72 |
预测组 | 11.87±0.18* |
验证组 | 11.76±0.47* |
1 | PATOCKA J, NEPOVIMOVA E, KUCA K, et al.. Cyclosporine A: chemistry and toxicity-a review[J]. Curr. Med. Chem., 2021, 28(20): 3925-3934. |
2 | 郑孝贤. 多孔木霉菌的菌丝形态分化与环孢菌素A合成关系的初步研究[J]. 生物技术进展, 2013, 3(2): 140-144. |
ZHENG X X. The relationship between morphological differentiation and cyclosporin a synthesis in Tolypocladium niveum [J]. Curr. Biotechnol., 2013, 3(2): 140-144. | |
3 | CUI W, CHEN S, HU T, et al.. Nanoceria-mediated cyclosporin a delivery for dry eye disease management through modulating immune-epithelial crosstalk[J]. ACS Nano, 2024, 18(17): 11084-11102. |
4 | HATAYA Y, NOMURA T, FUJISHIMA Y, et al.. Development of chronic thyroiditis during cyclosporin a treatment[J/OL]. JCEM Case Rep., 2024, 2(12): luae211[2025-04-22]. . |
5 | BABU P, PATEL Y, PANY S, et al.. Study of physiological parameters and rheology for the production and extraction of cyclosporin A[J]. Int. J. Res. Appl. Sci. Eng. Technol., 2022, 10(4): 394-399. |
6 | PANDEY S, TRIPATHI P, GUPTA A, et al.. A comprehensive review on possibilities of treating psoriasis using dermal cyclosporine[J]. Drug Deliv. Transl. Res., 2022, 12(7): 1541-1555. |
7 | SURVASE S A, KAGLIWAL L D, ANNAPURE U S, et al.. Cyclosporin A: a review on fermentative production, downstream processing and pharmacological applications[J]. Biotechnol. Adv., 2011, 29(4): 418-435. |
8 | 姜俊云, 董惠钧, 闫同顺. 雪白白僵菌产环孢菌素A分批补料发酵动力学[J]. 食品与发酵工业, 2012, 38(4): 53-56. |
JIANG J Y, DONG H J, YAN T S. Fed-batch fermentation kinetics of cyclosporine a by Beauveria nivea [J]. Food Ferment. Ind., 2012, 38(4): 53-56. | |
9 | 戴梦, 刘静, 赵颖, 等. 环孢菌素A生产菌原生质体转化系统的建立[J]. 化学与生物工程, 2013, 30(3): 36-38. |
DAI M, LIU J, ZHAO Y, et al.. Construction of protoplasts transformation system for cyclosporin a industrial strain[J]. Chem. Bioeng., 2013, 30(3): 36-38. | |
10 | 彭婷, 江丹, 陈阳, 等. 响应面法优化桑叶提取液脱色工艺及其对α-葡萄糖苷酶抑制活性[J]. 食品与发酵科技, 2024, 60(6):62-69. |
PENG T, JIANG D, CHEN Y, et al.. Optimization of decolorization process of mulberry leaf extract using response surface methodology and its inhibitory activity on α-glucosidase[J]. Food Ferment. Sci. Technol., 2024, 60(6): 62-69. | |
11 | 张春丹, 乔洁, 解春艳, 等. 响应面法优化山楂皮渣总黄酮提取工艺及抗氧化活性研究[J]. 廊坊师范学院学报(自然科学版), 2024, 24(4): 49-55. |
ZHANG C D, QIAO J, XIE C Y, et al.. Optimization ethanol extraction of total flavonoids from hawthorn pomace by response surface methodology and antioxidant activity[J]. J. Langfang Norm. Univ. Nat. Sci. Ed., 2024, 24(4): 49-55. | |
12 | 徐广新, 杨仁琴, 周炜, 等. 响应面法优化桂花酒酿酸奶制备工艺[J]. 食品安全质量检测学报, 2024, 15(23): 145-151. |
XU G X, YANG R Q, ZHOU W, et al.. Optimization of preparation process of Osmanthus yoghurt with fermented glutinous rice by response surface methodology[J]. J. Food Saf. Qual., 2024, 15(23): 145-151. | |
13 | 梁子昌, 陈明, 李大宁, 等. 响应面法优化牛大力茎总黄酮提取工艺[J]. 化学与生物工程, 2024, 41(12): 30-35. |
LIANG Z C, CHEN M, LI D N, et al.. Optimization in extraction process of total flavonoids from Millettia speciosa Champ.stem by response surface methodology[J]. Chem. Bioeng., 2024, 41(12): 30-35. | |
14 | 王喜龙, 张丽蓉, 欧晓彬, 等. 响应面法优化紫苏叶中抑菌成分的提取工艺[J]. 化学与生物工程, 2024, 41(12): 36-43. |
WANG X L, ZHANG L R, OU X B, et al.. Optimization in extraction process of bacteriostatic components from Perilla leaves by response surface methodology[J]. Chem. Bioeng., 2024, 41(12): 36-43. | |
15 | 林仙菊, 张祝兰, 严凌斌, 等. ARTP诱变选育环孢菌素A高产菌株及发酵工艺优化[J]. 工业微生物, 2023, 53(4): 158-163. |
LIN X J, ZHANG Z L, YAN L B, et al.. Study on screening of high-yield cyclosporin a producing strain by atmospheric and room temperature plasma mutagenesis and optimization of fermentation conditions[J]. Ind. Microbiol., 2023, 53(4): 158-163. | |
16 | 严凌斌, 张祝兰, 张引, 等. 响应面法优化他克莫司发酵培养基中无机盐组合[J]. 中国抗生素杂志, 2020, 45(10): 994-999. |
YAN L B, ZHANG Z L, ZHANG Y, et al.. Optimization of inorganic salts of fermentation medium for tacrolimus production by response surface methodology[J]. Chin. J. Antibiot., 2020, 45(10): 994-999. | |
17 | 祃栋猛, 陆信曜, 陈文强, 等. 发酵后期补加2种氮源对克雷伯氏菌合成1,3-丙二醇的影响[J]. 食品与发酵工业, 2016, 42(8): 8-12. |
MA D M, LU X Y, CHEN W Q, et al.. Influences on the biosynthesis of 1, 3-propanediol in Klebsiella pneumonia by feeding two types of nitrogen source at the late stage of fermentation[J]. Food Ferment. Ind., 2016, 42(8): 8-12. | |
18 | 卫云路, 郑成, 宁正祥. 表面活性剂作为发酵促进剂的国内外研究进展[J]. 化工进展, 2008, 27(7): 983-989. |
WEI Y L, ZHENG C, NING Z X. Research progress of surfactants as fermentation accelerator[J]. Chem. Ind. Eng. Prog., 2008, 27(7): 983-989. | |
19 | 周丽, 石彦鹏, 牛春, 等. 环孢菌素A的诱变育种及其发酵工艺优化研究[J]. 中兽医医药杂志, 2021, 40(2): 19-22. |
ZHOU L, SHI Y P, NIU C, et al.. Study on mutation breeding and fermentation optimization of cyclosporin A[J]. J. Tradit. Chin. Vet. Med., 2021, 40(2): 19-22. | |
20 | FALAH F, MORTAZAVI SALI, DANESH A, et al.. Production of cyclosporin A by Tolypocladium inflatum using dairy waste medium: optimization and investigation of the effect of ultrasound, high hydrostatic pressure, and pulsed electric field treatments on the morphology of fungus[J]. Biomass Convers. Biorefin., 2024, 14(22): 29101-29113. |
21 | 刘雨, 王会会, 赵建辉, 等. 雪白白僵菌高产环孢菌素A发酵条件优化[J]. 发酵科技通讯, 2021, 50(4): 198-201. |
LIU Y, WANG H H, ZHAO J H, et al.. Optimization of fermentation conditions for high production of cyclosporin A from Beauvcria nivea [J]. Bull. Ferment. Sci. Technol., 2021, 50(4): 198-201. | |
22 | 张梦菲, 余炼, 李菲, 等. 响应面法优化暹罗芽孢杆菌产大环内酯的发酵培养条件[J]. 生物技术通报, 2024, 40(8): 299-308. |
ZHANG M F, YU L, LI F, et al.. Optimization of fermentation culture conditions for macrolactins yield of Bacillus siamensis using response surface methodology[J]. Biotechnol. Bull., 2024, 40(8): 299-308. | |
23 | 孔蒙蒙, 金静静, 卢鹏, 等. 高产纤维素酶工程菌株产酶条件优化[J]. 生物技术进展, 2024, 14(6): 1032-1041. |
KONG M M, JIN J J, LU P, et al.. Optimization of enzyme production conditions of high-yielding cellulase engineering strains[J]. Curr. Biotechnol., 2024, 14(6): 1032-1041. |
[1] | 刘蕾, 周欣悦, 朱桢, 曹烨, 王文彬. 副溶血弧菌外膜铁蛋白受体pvuA基因的原核表达及产物的诱导条件优化[J]. 生物技术进展, 2022, 12(3): 396-404. |
[2] | 张春月, 金佳杨, 邱勇隽, 范立强, 赵黎明. 传统与未来的碰撞:食品发酵工程技术与应用进展[J]. 生物技术进展, 2021, 11(4): 418-429. |
[3] | 邱冠宇,李维杰,刘宝林. 响应面法降低肝细胞冷冻保护液中的二甲基亚砜浓度[J]. 生物技术进展, 2020, 10(2): 185-189. |
[4] | 任红梅,刘左军,伍国强,单夕文. 木霉W2固态发酵产羧甲基纤维素酶的研究[J]. 生物技术进展, 2013, 3(4): 270-276. |
[5] | 郑孝贤. 多孔木霉菌的菌丝形态分化与环孢菌素A合成关系的初步研究[J]. 生物技术进展, 2013, 3(2): 140-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部