1 |
DE FILIPPIS F, PARENTE E, ERCOLINI D. Recent past, present, and future of the food microbiome [J]. Ann. Rev. Food Sci. Technol., 2018, 9: 589-608.
|
2 |
GALIMBERTI A, BRUNO A, AGOSTINETTO G, et al.. Fermented food products in the era of globalization: tradition meets biotechnology innovations [J]. Curr. Opin. Biotechnol., 2021, 70: 36-41.
|
3 |
LV X, WU Y, GONG M, et al.. Synthetic biology for future food: research progress and future directions [J/OL]. Future Foods, 2021, 100025[2021-05-26]. .
|
4 |
QU K, GUO F, LIU X, et al.. Application of machine learning in microbiology [J/OL]. Front. Microbiol., 2019, 10:827[2021-05-26]. .
|
5 |
赵黎明. 膜分离技术在食品发酵工业中的应用 [M]. 北京:中国纺织出版社, 2011.
|
6 |
胡颖. 传统发酵食品的安全性以及微生物纯种分离技术在传统食品中的应用 [J]. 食品安全导刊, 2021, 3: 43-44.
|
7 |
ANAL A K, PERPETUINI G, PETCHKONGKAEW A, et al.. Food safety risks in traditional fermented food from South-East Asia [J/OL]. Food Control, 2020, 109: 106922[2021-05-26]. .
|
8 |
WU D, LI X, LU J, et al. Constitutive expression of the DUR 1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation [J/OL]. FEMS Microbiol. Lett., 2015, doi: 10.1093/femsle/fnv214 [2021-05-26]. .
|
9 |
夏傲喃, 李建华, 林祥娜, 等. 发酵食品微生物多样性分析方法研究进展 [J]. 食品研究与开发, 2021, 42(04): 220-224.
|
10 |
周景文, 高松, 刘延峰, 等. 新一代发酵工程技术:任务与挑战 [J]. 食品与生物技术学报, 2021, 40(1): 1-11.
|
11 |
CAMERON D E, BASHOR C J, COLLINS J J. A brief history of synthetic biology [J]. Nat. Rev. Microbiol., 2014, 12(5): 381-390.
|
12 |
刘延峰, 周景文, 刘龙, 等. 合成生物学与食品制造 [J]. 合成生物学, 2020, 1: 84-91.
|
13 |
赵国屏. 合成生物学:开启生命科学"会聚"研究新时代 [J]. 中国科学院院刊, 2018, 33(11): 1135-1149.
|
14 |
欧盟批准乳糖-N-新四糖等作为新食品成分使用 [J]. 中国食品卫生杂志, 2016, 28(2): 262.
|
15 |
KNIGHT T. Idempotent vector design for standard assembly of biobricks [J/OL]. Mit Artif. Int. Lab. Mit,2003,21168[2021-05-26]. .
|
16 |
OPGENORTH P, COSTELLO Z, OKADA T, et al.. Lessons from two design‑build‑test‑learn cycles of dodecanol production in Escherichia coli aided by machine learning [J]. ACS Synth. Biol., 2019, 8(6): 1337-1351.
|
17 |
TAYLOR B C, LEJZEROWICZ F, POIREL M, et al.. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome [J/OL]. Msystems, 2020, 5(2):19[2021-05-26]. .
|
18 |
PASOLLI E, DE FILIPPIS F, MAURIELLO I E, et al.. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome [J/OL]. Nat. Commun., 2020, 11(1):8[2021-05-26]. .
|
19 |
PARENTE E, DE FILIPPIS F, ERCOLINI D, et al.. Advancing integration of data on food microbiome studies: FoodMicrobionet 3.1, a major upgrade of the Food Microbionet database [J/OL]. Int. J. Food Microbiol., 2019, 305: 108249[2021-05-26]. .
|
20 |
ZHU H, LIU F, YE Y, et al.. Application of machine learning algorithms in quality assurance of fermentation process of black tea‑based on electrical properties [J]. J. Food Engin., 2019, 263: 165-172.
|
21 |
JIN G, WANG Y, LI L, et al.. Intelligent evaluation of black tea fermentation degree by FT-NIR and computer vision based on data fusion strategy [J/OL]. LWT, 2020, 125:109216[2021-05-26]. .
|
22 |
BOWLER A, ESCRIG J, POUND M, et al.. Predicting alcohol concentration during beer fermentation using ultrasonic measurements and machine learning [J/OL]. Fermentation, 2021, 7(1): vl [2021-05-26]. .
|
23 |
PERIS M, ESCUDER-GILABERT L. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review [J]. Anal. Chim. Acta, 2013, 804: 29-36.
|
24 |
田锡炜, 王冠, 张嗣良, 等. 工业生物过程智能控制原理和方法进展 [J]. 生物工程学报, 2019, 35 (10): 2014-2024.
|
25 |
王泽建, 王萍, 张琴, 等. 微生物发酵过程生理参数检测传感器技术与过程优化 [J]. 生物产业技术, 2018, 1: 19-32.
|
26 |
ULBRICHT M. Advanced functional polymer membranes [J]. Polymer, 2006, 47(7): 2217-2262.
|
27 |
YAO Z, LI Y, CUI Y, et al.. Tertiary amine block copolymer containing ultrafiltration membrane with pH-dependent macromolecule sieving and Cr (VI) removal properties [J]. Desalination, 2015, 355: 91-98.
|
28 |
STRIEMER C C, GABORSKI T R, MCGRATH J L, et al.. Charge-and size-based separation of macromolecules using ultrathin silicon membranes [J]. Nature, 2007, 445(7129): 749-753.
|
29 |
WANG Z, WANG C, CHEN K. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells [J]. J. Power Sour., 2001, 94(1): 40-50.
|
30 |
MELNIKOV S M, HÖLTZEL A, SEIDEL-MORGENSTERN A, et al.. Composition, structure, and mobility of water-acetonitrile mixtures in a silica nanopore studied by molecular dynamics simulations [J]. Anal. Chem., 2011, 83(7): 2569-2575.
|
31 |
SHAO M F, NING F Y, ZHAO J W, et al.. Preparation of Fe3O4-SiO2-layered double hydroxide core-shell microspheres for magnetic separation of proteins [J]. J. Am. Chemical Soc., 2012, 134(2): 1071-1077.
|
32 |
WASHBURN M P, WOLTERS D, YATES J R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology [J]. Nat. Biotechnol., 2001, 19(3): 242-247.
|
33 |
KALTENBRUNNER O, DIAZ L, HU X, et al.. Continuous bind‐and‐elute protein A capture chromatography: Optimization under process scale column constraints and comparison to batch operation [J]. Biotechnol. Prog., 2016, 32(4): 938-948.
|
34 |
MOLLERUP J M. Modelling oligomer formation in chromatographic separations [J]. J. Chromatogr. A, 2011, 1218(49): 8869-8873.
|
35 |
EVON LIERES, ANDERSSON J. A fast and accurate solver for the general rate model of column liquid chromatography [J]. Comp. Chem. Engin., 2010, 34(8): 1180-1191.
|
36 |
ALBERTON A L, SCHWAAB M, LOBãO M W N, et al.. Experimental design for the joint model discrimination and precise parameter estimation through information measures [J]. Chem. Engin. Sci., 2011, 66(9): 1940-1952.
|
37 |
OSBERGHAUS A, HEPBILDIKLER S, NATH S, et al.. Determination of parameters for the steric mass action model - A comparison between two approaches [J]. J.Chromatogr., 2012, 1233: 54-65.
|
38 |
GAROFALO C, BERBEGAL C, GRIECO F, et al.. Selection of indigenous yeast strains for the production of sparkling wines from native Apulian grape varieties [J]. Int.Journal of Food Microbiol., 2018, 285: 7-17.
|
39 |
ZHANG J, FANG F, CHEN J, et al.. The arginine deiminase pathway of koji bacteria is involved in ethyl carbamate precursor production in soy sauce [J]. FEMS Microbiol. Lett., 2014, 358(1): 91-97.
|
40 |
梁红敏, 刘洁, 史红梅. 食用植物酵素研究进展 [J]. 食品工业, 2020, 41(7): 193-197.
|
41 |
DAI J, SHA R, WANG Z, et al.. Edible plant Jiaosu: manufacturing, bioactive compounds, potential health benefits, and safety aspects [J]. J. Sci. Food and Agric., 2020, 100(15): 5313-5323.
|
42 |
高洁, 栾倩, 侯丽真, 等. 酵素食品研究进展 [J]. 食品工业, 2021, 42(2): 227-231.
|
43 |
PÉREZ-ESCALANTE E, ALATORRE-SANTAMARÍA S, CASTAÑEDA-OVANDO A, et al.. Human milk oligosaccharides as bioactive compounds in infant formula: recent advances and trends in synthetic methods [J]. Crit. Rev. Food Sci. Nutr., 2020,11: 1-34.
|
44 |
FARHI M, MARHEVKA E, MASCI T, et al.. Harnessing yeast subcellular compartments for the production of plant terpenoids [J]. Metab. Engin., 2011, 13(5): 474-481.
|
45 |
PANDEY R P, PARAJULI P, KOFFAS M A, et al.. Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology [J]. Biotechnol. Adv., 2016, 34(5): 634-662.
|
46 |
PARSCHAT K, SCHREIBER S, WARTENBERG D, et al.. High-titer de novo biosynthesis of the predominant human milk oligosaccharide 2'-fucosyllactose from sucrose in Escherichia coli [J]. ACS Synth. Biol., 2020, 9(10): 2784-2796.
|
47 |
PETSCHACHER B, NIDETZKY B. Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems [J]. J. Biotechnol., 2016, 235: 61-83.
|
48 |
DENG J, CHEN C, GU Y, et al.. Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis [J]. Metab. Engin., 2019, 55: 179-190.
|
49 |
HOLLANDS K, BARON C M, GIBSON K J, et al.. Engineering two species of yeast as cell factories for 2'-fucosyllactose [J]. Metab. Engin., 2019, 52: 232-242.
|
50 |
YIN X, LI J, H-DSHIN, et al.. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects [J]. Biotechnol. Adv., 2015, 33(6): 830-841.
|
51 |
JAROS D, ROHM H. Rennets: Applied Aspects, The Book of Cheese: The Essential Guide to Discovering Cheeses You'll Love [M]. USA:Flatiron Books, 2017:53-67.
|
52 |
周景文, 张国强, 赵鑫锐, 等. 未来食品的发展:植物蛋白肉与细胞培养肉 [J]. 食品与生物技术学报, 2020, 39(10): 1-8.
|
53 |
ANWISED P, JANGPROMMA N, TEMSIRIPONG T, et al.. Cloning, expression, and characterization of siamese crocodile ( Crocodylus siamensis) hemoglobin from Escherichia coli and Pichia pastoris [J]. Protein J. Sci., 2016, 35: 256-268.
|
54 |
MARTíNEZ J L, LIU L, PETRANOVIC D, et al.. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae [J]. Biotechnol. Bioengin., 2014, 112(1): 181-188.
|
55 |
JIN Y, HE X, ANDOH㎏UMI K, et al.. Evaluating potential Risks of food allergy and toxicity of soy leghemoglobin expressed in Pichia pastoris [J]. Mol. Nutr. Food Res., 2017, 62(1): 1700297-1700302.
|
56 |
李楠, 刘振民. 益生菌与功能发酵乳开发研究进展 [J]. 乳业科学与技术, 2020, 3: 31-38.
|
57 |
闫丹丽, 武俊瑞, 史海粟, 等. 下一代益生菌——卵形拟杆菌研究进展 [J]. 乳业科学与技术, 2020, 43 (1): 57-61.
|
58 |
于洁, 张和平. 益生菌发酵乳的研究及产业化进展 [J]. 中国食品学报, 2020, 20(10): 1-7.
|
59 |
MAJERSKA J, MICHALSKA A, FIGIEL A. A review of new directions in managing fruit and vegetable processing by-products [J]. Trends Food Sci. Technol., 2019, 88: 207-219.
|
60 |
SONNENBURG J L, SONNENBURG E D. Vulnerability of the industrialized microbiota [J/OL]. Science, 2019, 366(6464):9255[2021-05-26]. .
|
61 |
FRENCH K. Harnessing synthetic biology for sustainable development [J]. Nat. Sustainab., 2019, 2(4): 250-252.
|