生物技术进展 ›› 2024, Vol. 14 ›› Issue (4): 668-675.DOI: 10.19586/j.2095-2341.2024.0058
• 研究论文 • 上一篇
收稿日期:
2024-03-22
接受日期:
2024-06-21
出版日期:
2024-07-25
发布日期:
2024-08-07
通讯作者:
尚德静
作者简介:
段兴鹏 E-mail: duanxingpeng@ lnnu.edu.cn;
基金资助:
Xingpeng DUAN1(), Jingli LIU1, Che WANG2, Dejing SHANG1(
)
Received:
2024-03-22
Accepted:
2024-06-21
Online:
2024-07-25
Published:
2024-08-07
Contact:
Dejing SHANG
摘要:
巨噬细胞吞噬氧化型低密度脂蛋白(oxidized low density lipoprotein,ox-LDL)后形成的泡沫细胞是动脉粥样硬化过程的标志。在巨噬细胞摄取ox-LDL过程中,清道夫受体人类白细胞分化抗原36(cluster of differentiation 36,CD36)、清道夫受体A1(scavenger receptor class A1,SR-A1)、氧化低密度脂蛋白受体1(lectin like oxidized low density lipoprotein receptor,LOX-1)发挥着重要功能。有研究表明,与炎症相关的巨噬细胞Toll样受体(Toll-like receptors,TLR),如TLR4,通过激发炎症反应影响ox-LDL的摄取,然而两者的调控机制尚不清楚。巨噬细胞清道夫受体和TLR如何相互影响可能是治疗动脉粥样硬化的关键。通过对经典清道夫受体和TLR4在ox-LDL摄取与炎症反应中的作用研究进展进行综述,以期为寻找治疗动脉粥样硬化新的靶点提供思路。
中图分类号:
段兴鹏, 刘景丽, 王澈, 尚德静. 巨噬细胞清道夫受体与Toll样受体对Ox-LDL摄取和炎症的影响[J]. 生物技术进展, 2024, 14(4): 668-675.
Xingpeng DUAN, Jingli LIU, Che WANG, Dejing SHANG. Effects of Macrophage Scavenger Receptors and Toll-like Receptors on Ox-LDL Uptake and Inflammation[J]. Current Biotechnology, 2024, 14(4): 668-675.
1 | DAVIS F M, GALLAGHER K A. Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease[J]. Arterioscler. Thromb. Vasc. Biol., 2019, 39(4): 623-634. |
2 | BOBRYSHEV Y V. Monocyte recruitment and foam cell formation in atherosclerosis[J]. Micron, 2006, 37(3): 208-222. |
3 | CHISTIAKOV D A, BOBRYSHEV Y V, OREKHOV A N. Macrophage-mediated cholesterol handling in atherosclerosis[J]. J. Cell. Mol. Med., 2016, 20(1): 17-28. |
4 | BARRETT T J. Macrophages in atherosclerosis regression[J]. Arterioscler. Thromb. Vasc. Biol., 2020, 40(1): 20-33. |
5 | MUSHENKOVA N V, BEZSONOV E E, OREKHOVA V A, et al.. Recognition of oxidized lipids by macrophages and its role in atherosclerosis development[J/OL]. Biomedicines, 2021, 9(8): 915[2024-03-10]. . |
6 | TAYLOR P R, MARTINEZ-POMARES L, STACEY M, et al.. Macrophage receptors and immune recognition[J]. Annu. Rev. Immunol., 2005, 23: 901-944. |
7 | COLLOT-TEIXEIRA S, MARTIN J, MCDERMOTT-ROE C, et al.. CD36 and macrophages in atherosclerosis[J]. Cardiovasc. Res., 2007, 75(3): 468-477. |
8 | MUSHENKOVA N V, NIKIFOROV N G, MELNICHENKO A A, et al.. Functional phenotypes of intraplaque macrophages and their distinct roles in atherosclerosis development and atheroinflammation[J/OL]. Biomedicines, 2022, 10(2): 452[2024-03-10]. . |
9 | KZHYSHKOWSKA J, NEYEN C, GORDON S. Role of macrophage scavenger receptors in atherosclerosis[J]. Immunobiology, 2012, 217(5): 492-502. |
10 | ZANI I A, STEPHEN S L, MUGHAL N A, et al.. Scavenger receptor structure and function in health and disease[J]. Cells, 2015, 4(2): 178-201. |
11 | DE BEER M C, ZHAO Z, WEBB N R, et al.. Lack of a direct role for macrosialin in oxidized LDL metabolism[J]. J. Lipid Res., 2003, 44(4): 674-685. |
12 | YANG M, KHOLMUKHAMEDOV A, SCHULTE M L, et al.. Platelet CD36 signaling through ERK5 promotes caspase-dependent procoagulant activity and fibrin deposition in vivo [J]. Blood Adv., 2018, 2(21): 2848-2861. |
13 | ACKERS I, SZYMANSKI C, DUCKETT K J, et al.. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis[J]. Cardiovasc. Pathol., 2018, 34: 1-8. |
14 | LI C, CAI C, ZHENG X, et al.. Orientin suppresses oxidized low-density lipoproteins induced inflammation and oxidative stress of macrophages in atherosclerosis[J]. Biosci. Biotechnol. Biochem., 2020, 84(4): 774-779. |
15 | NAGY L, TONTONOZ P, ALVAREZ J G, et al.. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR gamma[J]. Cell, 1998, 93(2): 229-240. |
16 | SHU H, PENG Y, HANG W, et al.. The role of CD36 in cardiovascular disease[J]. Cardiovasc. Res., 2022, 118(1): 115-129. |
17 | LIU Q, FAN J, BAI J, et al.. IL-34 promotes foam cell formation by enhancing CD36 expression through p38 MAPK pathway[J/OL]. Sci. Rep., 2018, 8(1): 17347[2024-03-10]. . |
18 | RAGHAVAN S, SINGH N K, GALI S, et al.. Protein kinase Cθ via activating transcription factor 2-mediated CD36 expression and foam cell formation of Ly6C(hi) cells contributes to atherosclerosis[J]. Circulation, 2018, 138(21): 2395-2412. |
19 | AGRAWAL S, FEBBRAIO M, PODREZ E, et al.. Signal transducer and activator of transcription 1 is required for optimal foam cell formation and atherosclerotic lesion development[J]. Circulation, 2007, 115(23): 2939-2947. |
20 | CHEN Y, ZHANG J, CUI W, et al.. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate[J/OL]. J. Exp. Med., 2022, 219(6): e20211314[2024-03-10]. . |
21 | SHEEDY F J, GREBE A, RAYNER K J, et al.. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation[J]. Nat. Immunol., 2013, 14(8): 812-820. |
22 | PARK Y M. CD36, a scavenger receptor implicated in atherosclerosis[J/OL]. Exp. Mol. Med., 2014, 46(6): e99[2024-03-10]. . |
23 | XU S, LI L, YAN J, et al.. CML/CD36 accelerates atherosclerotic progression via inhibiting foam cell migration[J]. Biomed. Pharmacother., 2018, 97: 1020-1031. |
24 | CHEN Y, WANG X, BEN J, et al.. The di-leucine motif contributes to class a scavenger receptor-mediated internalization of acetylated lipoproteins[J]. Arterioscler. Thromb. Vasc. Biol., 2006, 26(6): 1317-1322. |
25 | RICCI R, SUMARA G, SUMARA I, et al.. Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis[J]. Science, 2004, 306(5701): 1558-1561. |
26 | WU X, CHENG B, GUO X, et al.. PPARα/γ signaling pathways are involved in Chlamydia pneumoniae-induced foam cell formation via upregulation of SR-A1 and ACAT1 and downregulation of ABCA1/G1[J/OL]. Microb. Pathog., 2021, 161(Pt B): 105284[2024-03-10]. . |
27 | YANG M Y, HUANG C N, CHAN K C, et al.. Mulberry leaf polyphenols possess antiatherogenesis effect via inhibiting LDL oxidation and foam cell formation[J]. J. Agric. Food Chem., 2011, 59(5): 1985-1995. |
28 | DAI X Y, CAI Y, MAO D D, et al.. Increased stability of phosphatase and tensin homolog by intermedin leading to scavenger receptor A inhibition of macrophages reduces atherosclerosis in apolipoprotein E-deficient mice[J]. J. Mol. Cell. Cardiol., 2012, 53(4): 509-520. |
29 | SHEN W, ANWAIER G, CAO Y, et al.. Atheroprotective mechanisms of tilianin by inhibiting inflammation through down-regulating NF-κB pathway and foam cells formation[J/OL]. Front. Physiol., 2019, 10: 825[2024-03-10]. . |
30 | YU X, YI H, GUO C, et al.. Pattern recognition scavenger receptor CD204 attenuates Toll-like receptor 4-induced NF-kappaB activation by directly inhibiting ubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6[J]. J. Biol. Chem., 2011, 286(21): 18795-18806. |
31 | CHEN Y, WERMELING F, SUNDQVIST J, et al.. A regulatory role for macrophage class A scavenger receptors in TLR4-mediated LPS responses[J]. Eur. J. Immunol., 2010, 40(5): 1451-1460. |
32 | QIAN L, LI X, FANG R, et al.. Class A scavenger receptor deficiency augments angiotensin Ⅱ-induced vascular remodeling[J]. Biochem. Pharmacol., 2014, 90(3): 254-264. |
33 | SUN S C. The noncanonical NF-κB pathway[J]. Immunol. Rev., 2012, 246(1): 125-140. |
34 | ZONG G, ZHU Y, ZHANG Y, et al.. SR-A1 suppresses colon inflammation and tumorigenesis through negative regulation of NF-κB signaling[J]. Biochem. Pharmacol., 2018, 154: 335-343. |
35 | LINARES-ALCÁNTARA E, MENDLOVIC F. Scavenger receptor A1 signaling pathways affecting macrophage functions in innate and adaptive immunity[J]. Immunol. Invest., 2022, 51(6): 1725-1755. |
36 | ONYISHI C U, DESANTI G E, WILKINSON A L, et al.. Toll-like receptor 4 and macrophage scavenger receptor 1 crosstalk regulates phagocytosis of a fungal pathogen[J/OL]. Nat. Commun., 2023, 14(1): 4895[2024-06-05]. . |
37 | DUNN S, VOHRA R S, MURPHY J E, et al.. The lectin-like oxidized low-density-lipoprotein receptor: a pro-inflammatory factor in vascular disease[J]. Biochem. J., 2008, 409(2): 349-355. |
38 | PIRILLO A, NORATA G D, CATAPANO A L. LOX-1, ox-LDL, and atherosclerosis[J/OL]. Mediators Inflamm., 2013, 2013: 152786[2024-06-05]. . |
39 | KUME N, KITA T. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in atherogenesis[J]. Trends Cardiovasc. Med., 2001, 11(1): 22-25. |
40 | KATAOKA H, KUME N, MIYAMOTO S, et al.. Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions[J]. Circulation, 1999, 99(24): 3110-3117. |
41 | KATTOOR A J, GOEL A, MEHTA J L. LOX-1: regulation, signaling and its role in atherosclerosis[J/OL]. Antioxidants, 2019, 8(7): 218[2024-06-05]. . |
42 | MITRA S, KHAIDAKOV M, LU J, et al.. Prior exposure to oxidized low-density lipoprotein limits apoptosis in subsequent generations of endothelial cells by altering promoter methylation[J]. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(2): 506-513. |
43 | STANCEL N, CHEN C C, KE L Y, et al.. Interplay between CRP, atherogenic LDL, and LOX-1 and its potential role in the pathogenesis of atherosclerosis[J]. Clin. Chem., 2016, 62(2): 320-327. |
44 | FENG Y, CAI Z R, TANG Y, et al.. TLR4/NF-κB signaling pathway-mediated and oxLDL-induced up-regulation of LOX-1, MCP-1, and VCAM-1 expressions in human umbilical vein endothelial cells[J]. Genet. Mol. Res., 2014, 13(1): 680-695. |
45 | LI D, SINGH R M, LIU L, et al.. Oxidized-LDL through LOX-1 increases the expression of angiotensin converting enzyme in human coronary artery endothelial cells[J]. Cardiovasc. Res., 2003, 57(1): 238-243. |
46 | BAGHERI B, KHATIBIYAN FEYZABADI Z, NOURI A, et al.. Atherosclerosis and toll-like receptor 4 (TLR4), lectin-like oxidized low-density lipoprotein-1 (LOX-1), and proprotein convertase subtilisin/kexin type9 (PCSK9)[J/OL]. Mediat. Inflamm., 2024, 2024: 5830491[2024-06-05]. . |
47 | MULLICK A E, TOBIAS P S, CURTISS L K. Modulation of atherosclerosis in mice by Toll-like receptor 2[J]. J. Clin. Invest., 2005, 115(11): 3149-3156. |
48 | CURTISS L K, BLACK A S, BONNET D J, et al.. Atherosclerosis induced by endogenous and exogenous toll-like receptor TLR1 or TLR6 agonists[J]. J. Lipid Res., 2012, 53(10): 2126-2132. |
49 | MICHELSEN K S, WONG M H, SHAH P K, et al.. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E[J]. Proc. Natl. Acad. Sci. USA, 2004, 101(29): 10679-10684. |
50 | ISHIBASHI M, SAYERS S, D'ARMIENTO J M, et al.. TLR3 deficiency protects against collagen degradation and medial destruction in murine atherosclerotic plaques[J]. Atherosclerosis, 2013, 229(1): 52-61. |
51 | SALAGIANNI M, GALANI I E, LUNDBERG A M, et al.. Toll-like receptor 7 protects from atherosclerosis by constraining "inflammatory" macrophage activation[J]. Circulation, 2012, 126(8): 952-962. |
52 | KOULIS C, CHEN Y C, HAUSDING C, et al.. Protective role for Toll-like receptor-9 in the development of atherosclerosis in apolipoprotein E-deficient mice[J]. Arterioscler. Thromb. Vasc. Biol., 2014, 34(3): 516-525. |
53 | KAWAI T, AKIRA S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat. Immunol., 2010, 11(5): 373-384. |
54 | ROWE D C, MCGETTRICK A F, LATZ E, et al.. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(16): 6299-6304. |
55 | MEDZHITOV R. Toll-like receptors and innate immunity[J]. Nat. Rev. Immunol., 2001, 1(2): 135-145. |
56 | KANTERS E, PASPARAKIS M, GIJBELS M J, et al.. Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice[J]. J. Clin. Invest., 2003, 112(8): 1176-1185. |
57 | ZENG X, GUO R, DONG M, et al.. Contribution of TLR4 signaling in intermittent hypoxia-mediated atherosclerosis progression[J/OL]. J. Transl. Med., 2018, 16(1): 106[2024-06-05]. . |
58 | MENDEL I, FEIGE E, YACOV N, et al.. VB-201, an oxidized phospholipid small molecule, inhibits CD14- and Toll-like receptor-2-dependent innate cell activation and constrains atherosclerosis[J]. Clin. Exp. Immunol., 2014, 175(1): 126-137. |
59 | STEWART C R, STUART L M, WILKINSON K, et al.. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer[J]. Nat. Immunol., 2010, 11(2): 155-161. |
60 | HCHOI S, YIN H, RAVANDI A, et al.. Polyoxygenated cholesterol ester hydroperoxide activates TLR4 and SYK dependent signaling in macrophages[J/OL]. PLoS ONE, 2013, 8(12): e83145[2024-06-05]. . |
61 | HILGENDORF I, EISELE S, REMER I, et al.. The oral spleen tyrosine kinase inhibitor fostamatinib attenuates inflammation and atherogenesis in low-density lipoprotein receptor-deficient mice[J]. Arterioscler. Thromb. Vasc. Biol., 2011, 31(9): 1991-1999. |
62 | BAHRAMI A, PARSAMANESH N, ATKIN S L, et al.. Effect of statins on toll-like receptors: a new insight to pleiotropic effects[J]. Pharmacol. Res., 2018, 135: 230-238. |
63 | LU Z, ZHANG X, LI Y, et al.. TLR4 antagonist reduces early-stage atherosclerosis in diabetic apolipoprotein E-deficient mice[J]. J. Endocrinol., 2013, 216(1): 61-71. |
64 | GELOEN A, HELIN L, GEERAERT B, et al.. CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis[J/OL]. PLoS ONE, 2012, 7(5): e37633[2024-06-05]. . |
65 | YUASA-KAWASE M, MASUDA D, YAMASHITA T, et al.. Patients with CD36 deficiency are associated with enhanced atherosclerotic cardiovascular diseases[J]. J. Atheroscler. Thromb., 2012, 19(3): 263-275. |
66 | YANG K, ZHANG X J, CAO L J, et al.. Toll-like receptor 4 mediates inflammatory cytokine secretion in smooth muscle cells induced by oxidized low-density lipoprotein[J/OL]. PLoS ONE, 2014, 9(4): e95935[2024-06-05]. . |
67 | ABDULAHAD D A, WESTRA J, LIMBURG P C, et al.. HMGB1 in systemic lupus erythematosus: its role in cutaneous lesions development[J]. Autoimmun. Rev., 2010, 9(10): 661-665. |
68 | TIAN K, OGURA S, LITTLE P J, et al.. Targeting LOX-1 in atherosclerosis and vasculopathy: current knowledge and future perspectives[J]. Ann. NY Acad. Sci., 2019, 1443(1): 34-53. |
69 | DING Z, LIU S, WANG X, et al.. Lectin-like ox-LDL receptor-1 (LOX-1)-Toll-like receptor 4 (TLR4) interaction and autophagy in CATH.a differentiated cells exposed to angiotensin Ⅱ[J]. Mol. Neurobiol., 2015, 51(2): 623-632. |
70 | LIN Y F, LI M H, HUANG R H, et al.. GP73 enhances the ox-LDL-induced inflammatory response in THP-1 derived macrophages via affecting NLRP3 inflammasome signaling[J/OL]. Int. J. Cardiol., 2023, 387: 131109[2024-06-05]. . |
71 | MA C, LI Y, TIAN M, et al.. Gsα regulates macrophage foam cell formation during atherosclerosis[J]. Circ. Res., 2024, 134(7): 34-51. |
72 | JIA Z, ZHANG X, LI Z, et al.. Hydrogen sulfide mitigates ox-LDL-induced NLRP3/caspase-1/GSDMD dependent macrophage pyroptosis by S-sulfhydrating caspase-1[J/OL]. Mol. Med. Rep., 2024, 30(2): 135[2024-06-05]. . |
[1] | 席照青, 包明威. 巨噬细胞糖脂代谢重编程在非酒精性脂肪肝中的研究进展[J]. 生物技术进展, 2024, 14(3): 399-405. |
[2] | 梁一鹏, 王迪, 宋昊泽, 石莉红, 佟静媛. 生物信息学分析鉴定骨髓增殖性肿瘤发生发展的免疫调控因子[J]. 生物技术进展, 2024, 14(3): 492-500. |
[3] | 韦双, 高维崧, 窦金萍, 赵泽鹏, 刘兴健, 李轶女. 细胞焦亡分子机制及其调控[J]. 生物技术进展, 2023, 13(6): 868-874. |
[4] | 朱钧锴, 葛玲智, 张超, 曹璨, 吴嘉惠, 穆震. 氢分子对咪喹莫特诱导的小鼠银屑病样皮损的抑制作用[J]. 生物技术进展, 2023, 13(6): 945-953. |
[5] | 张旭娟, 赵鹏翔, 刘子怡, 蔡子松, 刘梦昱, 谢飞, 马雪梅. EBV对宿主免疫的调控作用研究进展[J]. 生物技术进展, 2023, 13(5): 681-689. |
[6] | 方学升, 包明威. 骨膜蛋白在心血管疾病中的研究进展[J]. 生物技术进展, 2023, 13(5): 725-729. |
[7] | 张景怡, 姜雪, 马思禺, 冯智超, 仪杨, 马晨, 宋怡菲, 谢飞. 氢气对颅脑损伤的保护作用研究进展[J]. 生物技术进展, 2023, 13(2): 234-239. |
[8] | 李岩异, 吕娜, 陈金利, 李晓, 张卫婷, 张红霞. 大豆蛋白源性肽调节糖脂代谢机制研究进展[J]. 生物技术进展, 2022, 12(6): 853-860. |
[9] | 陈军, 秦树存, 何磊. 富氢盐水对咪喹莫特诱导小鼠银屑病的抑制作用[J]. 生物技术进展, 2022, 12(4): 503-509. |
[10] | 丁宁, 许叶, 曾玮思, 胡彦周, 洪凌宇, 黄昆仑, 贺晓云. 重组人乳铁蛋白和重组人溶菌酶对小鼠溃疡性结肠炎的改善作用研究[J]. 生物技术进展, 2022, 12(1): 120-128. |
[11] | 高丽, 杨磊, 李光鹏. Myostatin基因突变激发骨骼肌发育机制研究进展[J]. 生物技术进展, 2021, 11(4): 476-482. |
[12] | 王珍,杨洛,廖敏,郝亚荣. mTOR信号通路在糖尿病肾病发病机制中的研究进展[J]. 生物技术进展, 2021, 11(3): 316-321. |
[13] | 袁启锋,姚宝珍. 谷氨酸-谷氨酰胺循环异常与孤独症谱系障碍研究进展[J]. 生物技术进展, 2021, 11(2): 170-175. |
[14] | 欧阳满. FGF21类似物治疗动脉粥样硬化机制研究进展[J]. 生物技术进展, 2020, 10(5): 463-469. |
[15] | 琚芳迪,谢飞,郭大志,赵清辉,何晋,姚婷婷,赵鹏翔,潘树义,马雪梅. 吸氢对大鼠颅脑损伤引起的急性炎症反应的抑制作用[J]. 生物技术进展, 2020, 10(5): 541-549. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部