1 |
DAMLUJI A A, ALFARAIDHY M, ALHAJRI N, et al.. Sarcopenia and cardiovascular diseases[J]. Circulation, 2023, 147(20): 1534-1553.
|
2 |
ZHENG Y, LI T. Interleukin-22, a potent target for treatment of non-autoimmune diseases[J]. Hum. Vaccin. Immunother., 2018, 14(12): 2811-2819.
|
3 |
DOULABI H, RASTIN M, SHABAHANGH H, et al.. Analysis of Th22, Th17 and CD4+ cells co-producing IL-17/IL-22 at different stages of human colon cancer[J]. Biomed. Pharmacother., 2018, 103: 1101-1106.
|
4 |
ZERBINI A, MURATORE F, BOIARDI L, et al.. Increased expression of interleukin-22 in patients with giant cell arteritis[J]. Rheumatology (Oxford), 2018, 57(1): 64-72.
|
5 |
OUYANG W, O'GARRA A. IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation[J]. Immunity, 2019, 50(4): 871-891.
|
6 |
YAMAMOTO M, YASUKAWA H, TAKAHASHI J, et al.. Endogenous interleukin-22 prevents cardiac rupture after myocardial infarction in mice[J/OL]. PLoS One, 2023, 18(6): e0286907[2023-09-18]. .
|
7 |
HE W, ZHOU L, XU K, et al.. Immunopathogenesis and immunomodulatory therapy for myocarditis[J]. Sci. China Life Sci., 2023, 66(9): 2112-2137.
|
8 |
SAHU U, BISWAS D, PRAJAPATI V K, et al.. Interleukin-17-a multifaceted cytokine in viral infections[J]. J. Cell. Physiol., 2021, 236(12): 8000-8019.
|
9 |
KWONG J C, SCHWARTZ K L, CAMPITELLI M A. Acute myocardial infarction after laboratory-confirmed influenza infection[J]. N. Engl. J. Med., 2018, 378(26): 2540-2541.
|
10 |
TANG T T, LI Y Y, LI J J, et al.. Liver-heart crosstalk controls IL-22 activity in cardiac protection after myocardial infarction[J]. Theranostics, 2018, 8(16): 4552-4562.
|
11 |
BENNETT M R, SINHA S, OWENS G K. Vascular smooth muscle cells in atherosclerosis[J]. Circ. Res., 2016, 118(4): 692-702.
|
12 |
KUBOTA A, SUTO A, SUGA K, et al.. Inhibition of Interleukin-21 prolongs the survival through the promotion of wound healing after myocardial infarction[J]. J. Mol. Cell. Cardiol., 2021, 159: 48-61.
|
13 |
JONSSON A L, BÄCKHED F. Role of gut microbiota in atherosclerosis[J]. Nat. Rev. Cardiol., 2017, 14(2): 79-87.
|
14 |
POTHINENI N V K, SUBRAMANY S, KURIAKOSE K, et al.. Infections, atherosclerosis, and coronary heart disease[J]. Eur. Heart J., 2017, 38(43): 3195-3201.
|
15 |
FATKHULLINA A R, PESHKOVA I O, DZUTSEV A, et al.. An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis[J]. Immunity, 2018, 49(5): 943-957.
|
16 |
CARRERAS A, BÄCKHED F. 23, 22 calling the microbiota to control atherosclerosis[J]. Immunity, 2018, 49(5): 788-790.
|
17 |
QIU Y, XU S, CHEN X, et al.. NAD+ exhaustion by CD38 upregulation contributes to blood pressure elevation and vascular damage in hypertension[J/OL]. Signal Transduct. Target. Ther., 2023, 8(1): 353[2023-09-18]. .
|
18 |
RATTIK S, HULTMAN K, RAUCH U, et al.. IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice[J]. Atherosclerosis, 2015, 242(2): 506-514.
|
19 |
CHEN S, LI X, WANG Y, et al.. Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion-induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway[J]. Mol. Med. Rep., 2019, 19(5): 3633-3641.
|
20 |
CHELLAN B, YAN L, SONTAG T J, et al.. IL-22 is induced by S100/calgranulin and impairs cholesterol efflux in macrophages by downregulating ABCG1[J]. J. Lipid Res., 2014, 55(3): 443-454.
|
21 |
PADMANABHAN S, JOE B. Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans[J]. Physiol. Rev., 2017, 97(4): 1469-1528.
|
22 |
RODRIGUEZ-ITURBE B, PONS H, JOHNSON R J. Role of the immune system in hypertension[J]. Physiol. Rev., 2017, 97(3): 1127-1164.
|
23 |
LI R, ZHU L, WU M, et al.. Serum pharmacochemistry combined with network pharmacology-based mechanism prediction and pharmacological validation of Zhenwu Decoction on alleviating isoprenaline-induced heart failure injury in rats[J]. ACS Omega, 2023, 8(40): 37233-37247.
|
24 |
GARTZONIKAS I K, NAKA K K, ANASTASAKIS A. Current and emerging perspectives on pathophysiology, diagnosis, and management of hypertrophic cardiomyopathy[J]. Hellenic J. Cardiol., 2023, 70: 65-74.
|
25 |
DVIR D, LEON M B, ABDEL-WAHAB M, et al.. First-in-human dedicated leaflet splitting device for prevention of coronary obstruction in transcatheter aortic valve replacement[J]. JACC Cardiovasc. Interv., 2023, 16(1): 94-102.
|
26 |
JAPP A G, GULATI A, COOK S A, et al.. The diagnosis and evaluation of dilated cardiomyopathy[J]. J. Am. Coll. Cardiol., 2016, 67(25): 2996-3010.
|
27 |
SHEN J, FANG Y, ZHU H, et al.. Plasma interleukin-22 levels are associated with prediabetes and type 2 diabetes in the Han Chinese population[J]. J. Diabetes Investig., 2018, 9(1): 33-38.
|
28 |
HU M, LIN H, YANG L, et al.. Interleukin-22 restored mitochondrial damage and impaired glucose-stimulated insulin secretion through down-regulation of uncoupling protein-2 in INS-1 cells[J]. J. Biochem., 2017, 161(5): 433-439.
|
29 |
HARTMANN P, DUAN Y, MIYAMOTO Y, et al.. Colesevelam ameliorates non-alcoholic steatohepatitis and obesity in mice[J]. Hepatol. Int., 2022, 16(2): 359-370.
|
30 |
NAPPI F, AVTAAR SINGH S S. Distinctive signs of disease as deterrents for the endothelial function: a systematic review[J/OL]. Metabolites, 2023, 13(3): 430[2023-09-18]. .
|
31 |
JAACKS L M, VANDEVIJVERE S, PAN A, et al.. The obesity transition: stages of the global epidemic[J]. 2019, 7(3): 231-240.
|
32 |
BOSSONE E, GORLA R, LABOUNTY T M, et al.. Presenting systolic blood pressure and outcomes in patients with acute aortic dissection[J]. J. Am. Coll. Cardiol., 2018, 71(13): 1432-1440.
|
33 |
EVANGELISTA A, ISSELBACHER E M, BOSSONE E, et al.. Insights from the international registry of acute aortic dissection: a 20-year experience of collaborative clinical research[J]. Circulation, 2018, 137(17): 1846-1860.
|
34 |
YE J, WANG M, JIANG H, et al.. Increased levels of interleukin-22 in thoracic aorta and plasma from patients with acute thoracic aortic dissection[J]. Clin. Chim. Acta, 2018, 486: 395-401.
|