1 |
LI Y, ZHAO L, YU D, et al.. Metabolic dyndrome prevalence and its risk factors among adults in China: a nationally representative cross-sectional study[J/OL]. PLoS ONE, 2018, 13(6): e0199293[2018-06-19]. .
|
2 |
SAKLAYEN M G. The global epidemic of the metabolic syndrome[J/OL]. Curr. Hypertens. Rep., 2018, 20(2): 12[2018-02-26]. .
|
3 |
FARR O M, MANTZOROS C S. Treating prediabetes in the obese: are GLP-1 analogues the answer?[J]. Lancet, 2017, 389(10077): 1371-1372.
|
4 |
BOHULA S, SCIRICA B M, INZUCCHI S E, et al.. Effect of lorcaserin on prevention and remission of type 2 diabetes in overweight and obese patients (CAMELLIA TIMI 61): a randomised, placebo-controlled trial[J]. Lancet, 2018, 392(10161): 2269-2279.
|
5 |
DABKE K, HENDRICK G, DEVKOTA S. The gut microbiome and metabolic syndrome[J]. J. Clin. Invest., 2019, 129(10): 4050-4057.
|
6 |
MACKE E, TASIEMDKI, MASSOL F, et al.. Life history and eco-evolutionary dynamics in light of the gut microbiota[J]. OIKOS, 2017, 126(4): 508-531.
|
7 |
刘梓嘉,姜雪,仪杨,等. 氢气与肠道菌群的关系研究进展[J].生物技术进展,2022,12(6):847-852.
|
8 |
VALDES A M, WALTER J. Role of the gut microbiota in nutrition and health[J/OL]. Brit. Med. J., 2018, 361: k2179[2018-06-13]. .
|
9 |
DORON S, SNYDMAN D R. Risk and safety of probiotics[J]. Clin. Infect Dis., 2015, 60(S2): 129-134.
|
10 |
TAPIOVAARA L, LEHTORANTA L, POUSSA T, et al.. Absence of adverse events in healthy individuals using probiotics-analysis of six randomised studies by one study group[J]. Benef. Microbes., 2016, 7(2): 161-169.
|
11 |
BERMUDZ-HUMARAN L G, LANGELLA P. Live bacterial biotherapeutics in the clinic[J]. Nat. Biotechnol., 2018, 36(9): 816-818.
|
12 |
权春菊,郑忠亮. CRISPR/Cas及其衍生编辑技术在基因治疗中的应用进展[J].生物技术进展,2021,11(4):518-525.
|
13 |
BOER J R, BEISEL C L, NAIR N U. Synthetic biology approaches to engineer probiotics and members of the human microbiota for biomedical applications[J]. Annu. Rev. Biomed.Eng., 2018, 20: 277-300.
|
14 |
CERTAIN L K, WAY J C, PEZOEN M J, et al.. Using engineered bacteria to characterize infection dynamics and antibiotic effects in vivo[J]. Cell Host Microbe., 2017, 22: 263-268.
|
15 |
FERENCZI S, SOLYMOSI N, HORVATH I, et al.. Efficient treatment of a preclinical inflammatory bowel disease model with engineered bacteria[J]. Mol. Ther., 2020, 20: 218-226.
|
16 |
LI J, RIAZ R M S, SHAO D, et al.. Strategies to increase the efficacy of using gut microbiota for the modulation of obesity[J]. Nat. Rev. Immunol., 2017: 17: 219-232.
|
17 |
ZHAO J, LI M Y, CHEN Q F, et al.. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery[J/OL]. Nat. Commun., 2022, 13(1): 3432[2022-06-14]. .
|
18 |
HENDRIKX T, DUAN Y, WANG Y H, et al.. Bacteria engineered to produce IL22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice[J]. Gut, 2019, 68(8): 1504-1515.
|
19 |
CHUNG Y, RYU Y, AN B C, et al.. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota[J/OL]. Microbiome, 2021, 9(1): 122[2021-05-26]. .
|
20 |
ISABELLA V M, HA B N, CASTILLO M J, et al.. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria[J]. Nat. Biotechnol., 2018, 36(9): 857-864.
|
21 |
HOU Y, HOSSAIN G S, LI J H, et al.. Two-step production of phenylpyruvic acid from L-phenylalanine by growing and resting cells of engineered Escherichia coli: process optimization and kinetics modeling[J/OL]. PLoS ONE, 2016, 11(11): e0166457[2016-11-16]. .
|
22 |
PANTALEONE D P, GELLER A M, TAYLORP P, et al.. Purification and characterization of an L-amino acid deaminase used to prepare unnatural amino acids[J]. J. Mol. Catal. B Enzym., 2001, 11(4-6): 795-803.
|
23 |
KURTZ C B, MILLET Y A, PUURUNEN M K, et al.. An engineered E . coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans[J/OL]. Sci. Transl. Med., 2019, 11(475): eaau7975[2019-01-16]. .
|
24 |
WANG L F, CHEN T T, WANG H, et al.. Engineered bacteria of MG1363- pMG36e-GLP-1 attenuated obesityinduced by high fat diet in mice[J/OL]. Front. Cell. Infect. Mi., 2021, 11: 595575[2021-02-25]. .
|
25 |
HWANG I Y, KOH E, WONG A, et al.. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models[J/OL]. Nat. Commun, 2017, 8: 15028[2017-04-11]. .
|
26 |
KOH A, DE-VADER F, KOVATCHEVA-DATCHARY P, et al.. From detary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345.
|
27 |
OCHOA-SANCHEZ R M, OLIVEIRA M, TREMBLAY M, et al.. Genetically engineered E. coli nissle attenuates hyperammonemia and prevents memory impairment in bile-duct ligated rats[J]. Liver Int., 2021, 41(5): 1020-1032.
|
28 |
BAI L, GAO M X, CHENG X M, et al.. Engineered butyrate-producing bacteria prevents high fat diet-induced obesity in mice[J/OL]. Microb. Cell Fact., 2020, 19: 94[2020-04-25]. .
|
29 |
MSCOTT B, GUTIERREZ-VAZQUEZ C, SANMARCO L M, et al.. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease[J]. Nat. Med., 2021, 27(7): 1212-1222.
|
30 |
TIAN P Y, HUANG Z X, ZHAO X X, et al.. Engineered commensal bacteria prevent systemic inflammation-induced memory impairment and amyloidogenesis via producing GLP-1[J]. Appl. Microbiol. Biotechnol., 2018, 102(17): 7565-7575.
|
31 |
MA J, LI C Y, WANG J R, et al.. Genetically engineered Escherichia coli Nissle 1917 secreting GLP-1 analog exhibits potential antiobesity effect in high-fat diet-induced obesity mice[J]. Obesity, 2020, 28(2): 315-322.
|
32 |
WANG L N, CHENG X M, BAI L, et al.. Positive interventional effect of engineered butyrate-producing bacteria on metabolic disorders and intestinal flora disruption in obese mice[J/OL]. Microbiol. Spectr., 2022, 10(2): e0114721[2022-04-27]. .
|
33 |
SENTHIVINAYAGAM S, SERBULEA V, UPCHURCH C M, et al.. Adaptive thermogenesis in brown adipose tissue involves activation of pannexin-1 channels[J/OL]. Mol. Metab., 2020, 44: 101130[2020-11-25]. .
|
34 |
ATKINsSON M A, VON HERRATH M, POWERS A C, et al.. Current concepts on the pathogenesis of type 1 diabetes-considerations for attempts to prevent and reverse the disease[J]. Diabetes Care, 2015, 38(6): 979-988.
|
35 |
ABDELALIM E M. Modeling different types of diabetes using human pluripotent stem cells[J]. Cell. Mol. Life Sci., 2021, 78: 2459-2483.
|
36 |
VETHE H, BJORLYKKE Y, GHILA L M, et al.. Probing the missing mature β-cell proteomic landscape in differentiating patient iPSC-derived cells[J/OL]. Sci. Rep., 2017, 7(1): 4780[2017-07-06]. .
|
37 |
JINNG N H, BINTEJASMEN J, LIM C S, et al.. HNF4A haploinsufficiency in MODY1 abrogates liver and pancreas differentiation from patient-derived induced pluripotent stem cells[J]. iScience, 2019, 16: 192-205.
|
38 |
ROSADA-O, IVIERI E A, ANDERSON K, KENTY J H, et al.. YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing β cells[J/OL]. Nat. Commun., 2019, 10(1): 1464[2019-04-01]. .
|
39 |
RUSSELL B J, BROWN S D, SIGUENZA N, et al.. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes[J]. Cell, 2022, 185(17): 3263-3277.
|
40 |
SUMPTER K M, ADHIKARI S, GRISHMAN E K, et al.. Preliminary studies related to anti-interleukin-1 β therapy in children with newly diagnosed type 1 diabetes[J]. Pediatr. Diabet., 2011, 12(7): 656-667.
|
41 |
KRON J, CRAWFORD T, MIHALICK V, et al.. Interleukin-1 blockade in cardiac sarcoidosis: study design of the multimodality assessment of granulomas in cardiac sarcoidosis: anakinra randomized trial (MAGiC-ART)[J/OL]. J. Transl. Med., 2021, 19(1): 460[2021-11-08]. .
|
42 |
CHENG M Y, CHENG Z Y, YU Y Y, et al.. An engineered genetic circuit for lactose intolerance alleviation[J/OL]. BMC Biol., 2021, 19: 137[2021-07-05]. .
|
43 |
SMITH B K, COLLINS S W, CONON T J, et al.. Phase Ⅰ/Ⅱ trial of adeno-associated virus-mediated alphaglucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes[J]. Hum. Gene Ther., 2013, 24: 630-640.
|
44 |
CORTI M, LIBERATI C, SMITH B K, et al.. Safety of intradiaphragmatic delivery of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by Pompe disease[J]. Hum. Gene Ther. Clin. Dev., 2017, 28(4): 208-218.
|
45 |
TUSKE S, YU T, HORDEAUX J, et al.. Development of a novel gene therapy for pompe disease: engineered acid alpha-glucosidase transgene for improved expression and muscle targeting[J]. Mol. Ther., 2002, 5(1): 571-578.
|
46 |
COLELLA P, SELLIER P, VERDERA H C, et al.. AAV gene transfer with tandem promoter design prevents anti-transgene immunity and provides persistent efficacy in neonate pompe mice[J]. Mol. Ther., 2018, 12: 85-101.
|
47 |
HU Z, LAN Y, ZHU D, et al.. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells[J/OL]. Biomed. Res. Int., 2014, 2014: 612832[2014-07-20]. .
|
48 |
XU L, WANG J, LIU Y L, et al.. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia[J]. New Engl. J. Med., 2019, 381: 1240-1247.
|
49 |
OU L, PRZYBILLA M J, AHLAT O, et al.. A highly efficacious PS gene editing system corrects metabolic and neurological complications of mucopolysaccharidosis type Ⅰ[J]. Mol. Ther., 2020, 28(6): 1442-1454.
|
50 |
SAWAMOTO K, CHEN H H, ALMECIGA-DIAZ C J, et al.. Gene therapy for mucopolysaccharidoses[J]. Mol. Genet. Metab., 2018, 123: 59-68.
|
51 |
TARDIEU M, ZERAH M, GOUGENON M L, et al.. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial[J]. Lancet Neurol., 2017, 16(9): 712-720.
|