1 |
张质夫,王振华.肥胖的危害[J].中国社区医师(医学专业),2012,14(20):346.
|
|
ZHANG Z F, WANG Z H. The dangers of obesity[J]. Chin. Comm. Dr., 2012, 14(20): 346.
|
2 |
吕中凡,史鹏,刘杨婷.低氧锻炼减控体重效果:基于随机对照实验的meta分析[J].辽宁师范大学学报(自然科学版),2020,43(4):558-569.
|
|
LYU Z F, SHI P, LIU Y T. Effects of hypoxic exercise reduce or control weight: a meta-analysis based on RCTs[J]. J. Liaoning Norm. Univ. Nat. Sci. Ed., 2020, 43(4): 558-569.
|
3 |
URDAMPILLETA A, GONZÁLEZ-MUNIESA P, PORTILLO M P, et al.. Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity[J]. J. Physiol. Biochem., 2012, 68(2): 289-304.
|
4 |
CHEN N, WANG J. Wnt/beta-catenin signaling and obesity[J/OL]. Front Physiol., 2018, 9: 792[2024-05-12]. .
|
5 |
CHEN M, LU P, MA Q, et al.. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes[J/OL]. Sci. Adv., 2020, 6(2): eaax9605[2024-04-15]. .
|
6 |
KOUTAKI D, MICHOS A, BACOPOULOU F, et al.. The emerging role of Sfrp5 and Wnt5a in the pathogenesis of obesity: implications for a healthy diet and lifestyle[J/OL]. Nutrients, 2021, 13(7): 2459[2024-04-15]. .
|
7 |
田雪文. 基于iTRAQ的低氧运动肥胖大鼠肝脏蛋白质组学及Wnt/β-catenin信号通路的作用机制研究 [D]. 上海:上海体育学院, 2018.
|
8 |
KHALYFA A, ERICSSON A, QIAO Z, et al.. Circulating exosomes and gut microbiome induced insulin resistance in mice exposed to intermittent hypoxia: effects of physical activity[J/OL]. EBio. Med., 2021, 64: 103208[2024-04-15]. .
|
9 |
ZHANG L, YU D. Exosomes in cancer development, metastasis, and immunity[J]. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2): 455-468.
|
10 |
孟昶.低氧训练对肥胖大鼠肝脏脂代谢关联基因及血清外泌体的影响[D].曲阜:曲阜师范大学,2020.
|
11 |
孟昶,朱磊.低氧运动调节脂代谢的研究进展[J].湖北体育科技,2019,38(2):136-138.
|
|
MENG C, ZHU L. Advances in research on regulation of lipid metabolism by hypoxic exercise[J]. Hubei Phys. Sci., 2019, 38(2): 136-138.
|
12 |
荆文,李传芬,冯连世,等.低氧训练通过HIF-1α-miR-122-5p-SREBP-1c调节肥胖大鼠肝脏脂代谢的机制研究[J].中国体育科技,2018,54(3):60-67.
|
|
JING W, LI C F, FENG L S, et al.. The mechanism of hypoxic training regulating lipid metabolism by HIF-1α - miR-122-5p - SREBP-1c in obese rat liver[J]. China Sport Sci. Technol., 2018, 54(3): 60-67.
|
13 |
朱磊,路瑛丽,冯连世.低氧训练诱导miR-27/PPARγ调控肥胖大鼠肝脏脂肪酸代谢变化的研究[J].中国体育科技,2018,54(1):115-122.
|
|
ZHU L, LU Y L, FENG L S. Study on hypoxia exercise inducing miR-27/PPARγ to regulate fatty acids metabolism in obese rat's liver[J]. China Sport Sci. Technol., 2018, 54(1): 115-122.
|
14 |
GUTWENGER I, HOFER G, GUTWENGER A K, et al.. Pilot study on the effects of a 2-week hiking vacation at moderate versus low altitude on plasma parameters of carbohydrate and lipid metabolism in patients with metabolic syndrome[J/OL]. BMC Res. Notes, 2015, 8(1): 103[2024-04-15]. .
|
15 |
SAMANTA D, SEMENZA G L. Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors[J]. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(1): 15-22.
|
16 |
MYLONIS I, SIMOS G, PARASKEVA E. Hypoxia-inducible factors and the regulation of lipid metabolism[J/OL]. Cells, 2019, 8(3): E214[2024-04-15]. .
|
17 |
YUN Z, MAECKER H L, JOHNSON R S, et al.. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia[J]. Dev. Cell, 2002, 2(3): 331-341.
|
18 |
YAGHOUBI S, NAJMINEJAD H, DABAGHIAN M, et al.. How hypoxia regulate exosomes in ischemic diseases and cancer microenvironment?[J]. IUBMB Life, 2020, 72(7): 1286-1305.
|
19 |
LIU W, ZHANG H, MAI J, et al.. Distinct anti-fibrotic effects of exosomes derived from endothelial colony-forming cells cultured under normoxia and hypoxia[J]. Med. Sci. Monit., 2018, 24: 6187-6199.
|
20 |
ZHANG Y, SONG K, QI G, et al.. Adipose-derived exosomal miR-210/92a cluster inhibits adipose browning via the FGFR-1 signaling pathway in high-altitude hypoxia[J/OL]. Sci. Rep., 2020, 10(1): 14390[2024-04-15]. .
|
21 |
LEWIS J E, SAMMS R J, COOPER S, et al.. Antibody-mediated targeting of the FGFR1c isoform increases glucose uptake in white and brown adipose tissue in male mice[J]. Endocrinology, 2017, 158(10): 3090-3096.
|
22 |
LIU J, XIAO Q, XIAO J, et al.. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J/OL]. Signal Transduct. Target. Ther., 2022, 7: 3[2024-04-15]. .
|
23 |
SHI Z Y, DENG J X, FU S, et al.. Protective effect of autophagy in neural ischemia and hypoxia: negative regulation of the Wnt/β-catenin pathway[J]. Int. J. Mol. Med., 2017, 40(6): 1699-1708.
|
24 |
SCHÜBEL R, SOOKTHAI D, GREIMEL J, et al.. Key genes of lipid metabolism and WNT-signaling are downregulated in subcutaneous adipose tissue with moderate weight loss[J/OL]. Nutrients, 2019, 11(3): E639[2024-04-15]. .
|
25 |
ROUTLEDGE D, SCHOLPP S. Mechanisms of intercellular Wnt transport[J/OL]. Development, 2019, 146(10): dev176073[2024-04-15]. .
|
26 |
GROSS J C, CHAUDHARY V, BARTSCHERER K, et al.. Active Wnt proteins are secreted on exosomes[J]. Nat. Cell Biol., 2012, 14: 1036-1045.
|
27 |
MCBRIDE J D, RODRIGUEZ-MENOCAL L, GUZMAN W, et al.. Bone marrow mesenchymal stem cell-derived CD63+ exosomes transport Wnt3a exteriorly and enhance dermal fibroblast proliferation, migration, and angiogenesis in vitro [J]. Stem Cells Dev., 2017, 26(19): 1384-1398.
|
28 |
XU H, JIAO X, WU Y, et al.. Exosomes derived from PM2.5-treated lung cancer cells promote the growth of lung cancer via the Wnt3a/β-catenin pathway[J]. Oncol. Rep., 2019, 41(2): 1180-1188.
|
29 |
CHEN Q, TAKADA R, NODA C, et al.. Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells[J/OL]. Sci. Rep., 2016, 6: 35562[2024-04-15]. .
|
30 |
KOCH R, DEMANT M, AUNG T, et al.. Populational equilibrium through exosome-mediated Wnt signaling in tumor progression of diffuse large B-cell lymphoma[J]. Blood, 2014, 123(14): 2189-2198.
|