生物技术进展 ›› 2024, Vol. 14 ›› Issue (1): 111-119.DOI: 10.19586/j.2095-2341.2023.0127
• 进展评述 • 上一篇
杨敏1(), 褚厚娟2,3, 朱龙佼1, 胡清华2,3, 许秀丽4, 张峰4, 谢语诗1, 许文涛1, 杨松林2,3()
收稿日期:
2023-10-17
接受日期:
2023-11-29
出版日期:
2024-01-25
发布日期:
2024-02-05
通讯作者:
杨松林
作者简介:
杨敏 E-mail: yangm61012@163.com;
基金资助:
Min YANG1(), Houjuan CHU2,3, Longjiao ZHU1, Qinghua HU2,3, Xiuli XU4, Feng ZHANG4, Yushi XIE1, Wentao XU1, Songlin YANG2,3()
Received:
2023-10-17
Accepted:
2023-11-29
Online:
2024-01-25
Published:
2024-02-05
Contact:
Songlin YANG
摘要:
由于银离子(Ag+)会威胁人类健康和生态系统平衡,其检测在环境和食品领域引起了广泛关注。比色法是检测Ag+最常用的方法之一,具有简单、易操作、可现场快速检测等优点。传感机理以及显色材料的发展是比色法领域的重要研究方向。综述了Ag+比色检测技术的显色机理及其传感策略,将显色机理分为三类,包括酶催化、等离子体共振和化学显色,并对相应的显色材料进行了概括。讨论了Ag+检测的传感机理、传感性能和实际样品应用,并总结了目前Ag+比色法检测的挑战和前景,旨在帮助读者更好地理解Ag+比色法的原理,推动重金属离子快速检测技术的发展。
中图分类号:
杨敏, 褚厚娟, 朱龙佼, 胡清华, 许秀丽, 张峰, 谢语诗, 许文涛, 杨松林. 银离子比色检测技术研究进展[J]. 生物技术进展, 2024, 14(1): 111-119.
Min YANG, Houjuan CHU, Longjiao ZHU, Qinghua HU, Xiuli XU, Feng ZHANG, Yushi XIE, Wentao XU, Songlin YANG. Research Progress on Silver Ion Colorimetric Detection[J]. Current Biotechnology, 2024, 14(1): 111-119.
图3 基于谷胱甘肽刻蚀AuNP@MnO2纳米粒子比色检测银离子原理图[41]
Fig. 3 The schematic diagram of Ag+ colorimetric detection based on etching AuNP@MnO2 nanoparticles with glutathione[41]
材料 | 传感机制 | 线性范围 | 检测限 | 实际样品 | 参考文献 | |
---|---|---|---|---|---|---|
DNA | AuNPs、 Exo Ⅲ、C-rich ssDNA | LSPR | 0.057∼57.000 nmol·L-1 | 39 fmol·L-1 | 河水 | [ |
G-四链体-Hemin脱氧核酶 | 酶催化 | 2×10-8~2×10-6mol·L-1 | 7 nmol·L-1 | / | [ | |
纳米材料 | Ch-PtNPs | 酶催化 | 5~1 000 nmol·L-1 | 4 nmol·L-1 | 自来水和湖水 | [ |
DSP-AuNPs | LSPR | 0.50~3.00 μmol·L-1、3.00~35.00 μmol·L-1 | 0.13 μmol·L-1 | 天然水和来自校园内排水沟的水 | [ | |
Ti3C2 MXene | LSPR | 2~200 μmol·L-1 | 0.615 μmol·L-1 | 自来水 | [ | |
化学分子 | 磺胺基复合物 | 化学显色 | / | 2.42 μmol·L-1 | / | [ |
N,N-二甲基-7-硝基苯并[c][ | 化学显色 | 0~4.0 × 10-5 mol·L-1 | 3.60 μmol·L-1 | / | [ |
表1 银离子不同比色检测方法的比较
Table 1 Comparison of different colorimetric detection methods for Ag+
材料 | 传感机制 | 线性范围 | 检测限 | 实际样品 | 参考文献 | |
---|---|---|---|---|---|---|
DNA | AuNPs、 Exo Ⅲ、C-rich ssDNA | LSPR | 0.057∼57.000 nmol·L-1 | 39 fmol·L-1 | 河水 | [ |
G-四链体-Hemin脱氧核酶 | 酶催化 | 2×10-8~2×10-6mol·L-1 | 7 nmol·L-1 | / | [ | |
纳米材料 | Ch-PtNPs | 酶催化 | 5~1 000 nmol·L-1 | 4 nmol·L-1 | 自来水和湖水 | [ |
DSP-AuNPs | LSPR | 0.50~3.00 μmol·L-1、3.00~35.00 μmol·L-1 | 0.13 μmol·L-1 | 天然水和来自校园内排水沟的水 | [ | |
Ti3C2 MXene | LSPR | 2~200 μmol·L-1 | 0.615 μmol·L-1 | 自来水 | [ | |
化学分子 | 磺胺基复合物 | 化学显色 | / | 2.42 μmol·L-1 | / | [ |
N,N-二甲基-7-硝基苯并[c][ | 化学显色 | 0~4.0 × 10-5 mol·L-1 | 3.60 μmol·L-1 | / | [ |
1 | BALAMURUGAN G, JANG J W, PARK S J, et al.. Ratiometric photothermal detection of silver ions using diimmonium salts[J/OL]. Talanta, 2022, 242: 123296[2023-12-22]. . |
2 | SMITH J N, THOMAS D G, JOLLEY H, et al.. All that is silver is not toxic: silver ion and particle kinetics reveals the role of silver ion aging and dosimetry on the toxicity of silver nanoparticles[J/OL]. Part. Fibre Toxicol., 2018, 15(1): 47[2023-12-22]. . |
3 | HADRUP N, SHARMA A K, LOESCHNER K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review[J]. Regul. Toxicol. Pharmacol., 2018, 98: 257-267. |
4 | LABORDA F, JIMÉNEZ-LAMANA J, BOLEA E, et al.. Selective identification, characterization and determination of dissolved silver(i) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry[J]. J. Anal. At. Spectrom., 2011, 26(7): 1362-1371. |
5 | CHAKRAPANI G, MAHANTA P L, MURTY D S, et al.. Preconcentration of traces of gold, silver and palladium on activated carbon and its determination in geological samples by flame AAS after wet ashing[J]. Talanta, 2001, 53(6): 1139-1147. |
6 | BRITTLE S W, BAKER J D, DORNEY K M, et al.. Measuring the silver composition of nanocolloids by inductively coupled plasma-optical emission spectroscopy: a laboratory experiment for chemistry and engineering students[J]. J. Chem. Educ., 2015, 92(6): 1061-1065. |
7 | SONG Y, WANG X, LIU H, et al.. A high selective colorimetric fluorescent probe for detection of silver ions in vitro and in vivo and its application on test strips[J/OL]. Talanta, 2022, 246: 123366[2023-12-22]. . |
8 | DU Z, ZHU L, WANG P, et al.. Coordination-driven one-step rapid self-assembly synthesis of dual-functional Ag@Pt nanozyme[J/OL]. Small, 2023, 19(35): e2301048[2023-12-22]. . |
9 | YANG W, ZHU L, YANG M, et al.. Synthesis of amorphous/crystalline hetero-phase nanozymes with peroxidase-like activity by coordination-driven self-assembly for biosensors[J/OL]. Small, 2023, 19(2): e2204782[2023-12-22]. . |
10 | LI J, WU H, YAN Y, et al.. Zippered G-quadruplex/hemin DNAzyme: exceptional catalyst for universal bioanalytical applications[J]. Nucleic Acids Res., 2021, 49(22): 13031-13044. |
11 | GHOSH S K, PAL T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications[J]. Chem. Rev., 2007, 107(11): 4797-4862. |
12 | NEHL C L, HAFNER J H. Shape-dependent plasmon resonances of gold nanoparticles[J]. J. Mater. Chem., 2008, 18(21): 2415-2419. |
13 | CUI Y, ZHAO J, LI H. Chromogenic mechanisms of colorimetric sensors based on gold nanoparticles[J/OL]. Biosensors, 2023, 13(8): 801[2023-12-22]. . |
14 | ZHANG Z, WANG H, CHEN Z, et al.. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: strategies and applications[J]. Biosens. Bioelectron., 2018, 114: 52-65. |
15 | CAO Y, LIU T, CHEN T, et al.. Revealing the etching process of water-soluble Au25 nanoclusters at the molecular level[J/OL]. Nat. Commun., 2021, 12: 3212[2023-12-22]. . |
16 | GUO K, XU D, XU L, et al.. Noble metal nanodendrites: growth mechanisms, synthesis strategies and applications[J]. Mater. Horiz., 2023, 10(4): 1234-1263. |
17 | WANG D, GUO R, WEI Y, et al.. Sensitive multicolor visual detection of telomerase activity based on catalytic hairpin assembly and etching of Au nanorods[J]. Biosens. Bioelectron., 2018, 122: 247-253. |
18 | ZHU C, XU Q. Amorphous materials for enhanced localized surface plasmon resonances[J]. Chem. Asian J., 2018, 13(7): 730-739. |
19 | XIAO W, GAO Y, ZHANG Y, et al.. Enhanced 3D paper-based devices with a personal glucose meter for highly sensitive and portable biosensing of silver ion[J]. Biosens. Bioelectron., 2019, 137: 154-160. |
20 | GIL D, LEE J J, KIM C. Detection of silver ions by a novel NBD-based colorimetric chemosensor with the intramolecular charge transfer character[J/OL]. Polyhedron, 2023, 240: 116453[2023-12-22]. . |
21 | GOH H, NAM T K, SINGH A, et al.. Dipodal colorimetric sensor for Ag+ and its resultant complex for iodide sensing using a cation displacement approach in water[J]. Tetrahedron Lett., 2017, 58(11): 1040-1045. |
22 | DERAYEA S M, NAGY D M. Application of a xanthene dye, eosin Y, as spectroscopic probe in chemical and pharmaceutical analysis: a review[J/OL]. Rev. Anal. Chem., 2018, 37(3):20170020[2023-12-22]. . |
23 | BASAVAIAH K, NAGEGOWDA P. Argentimetric assay of captopril in bulk drug and in tablets[J]. J. Iran. Chem. Soc., 2004, 1(2): 106-114. |
24 | 杨孝容. 催化动力学分光光度法测定痕量银[J]. 武汉理工大学学报,2007,29(11):40-43. |
YANG X R. Determination of trace sliver by catalytic-kinetic spectrophotometric method[J]. J. Wuhan Univ. Technol., 2007, 29(11): 40-43. | |
25 | 刘艳娟. 催化光度法测定水中痕量银[J]. 化学工程师, 2010,24(11):31-33. |
LIU Y J. Determination of trace siliverin water by catalytic spectrophotometry[J]. Chem. Eng., 2010, 24(11): 31-33. | |
26 | 黄晓东, 陈美珠, 庄建文, 等. 以十二烷基苯磺酸钠为增溶剂催化光度法测定痕量银[J]. 光谱实验室, 2003, 20(5): 757-760. |
HUANG X D, CHEN M Z, ZHUANG J W, et al.. Catalytic spectrophotometric determination of trace silver using sodium dodecyl benzene sulfonic acid as solubilized agent[J]. Chin. J. Spectrosc. Lab., 2003, 20(5): 757-760. | |
27 | XIE Y, YANG M, ZHU L, et al.. Research progress of DNA aptamer-based silver ions detection[J]. Adv. Agrochem., 2023, 2(3): 231-235. |
28 | ANASTASSOPOULOU J. Metal-DNA interactions[J]. J. Mol. Struct., 2003, 651-653: 19-26. |
29 | CHEN X, KARPENKO A, LOPEZ-ACEVEDO O. Silver-mediated double Helix: structural parameters for a robust DNA building block[J]. ACS Omega, 2017, 2(10): 7343-7348. |
30 | YANG M, ZHU L, YANG W, et al.. Nucleic acid-templated silver nanoclusters: a review of structures, properties, and biosensing applications[J/OL]. Coord. Chem. Rev., 2023, 491: 215247[2023-12-22]. . |
31 | BERTI L, BURLEY G A. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles[J]. Nat. Nanotechnol., 2008, 3(2): 81-87. |
32 | XU S, CHEN X, CHEN X, et al.. Methylene blue-based distinguishing DNA conformation for colorimetric detection of silver ions[J]. Microchem. J., 2019, 147: 995-998. |
33 | LI J, XI H, KONG C, et al.."aggregation-to-deaggregation" colorimetric signal amplification strategy for Ag+ detection at the femtomolar level with dark-field microscope observation[J]. Anal. Chem., 2018, 90(19): 11723-11727. |
34 | 肖志友, 司恒丹, 邓兰清, 等. 基于G-四链体-氯化血红素DNA酶比色法测定银离子和汞离子传感器的构筑[J]. 分析测试学报, 2019, 38(7): 840-844. |
XIAO Z Y, SI H D, DENG L Q, et al.. Fabrication of a sensor for colorimetric determination of silver and mercury ions based on G-quadruplex-hemin DNAzymes[J]. J. Instrum. Anal., 2019, 38(7): 840-844. | |
35 | 张启秀. 银离子、碘离子比色传感新方法研究[D]. 青岛: 青岛科技大学, 2013. |
36 | DENG H, HE S, LIN X, et al.. Target-triggered inhibiting oxidase-mimicking activity of platinum nanoparticles for ultrasensitive colorimetric detection of silver ion[J]. Chin. Chem. Lett., 2019, 30(9): 1659-1662. |
37 | LI J, TAN W, LI X, et al.. Silver ion-facilitated singular poulos-kraut mechanism of O-O heterolysis to enhance the light activation of H2O2 over peroxidase-mimicking photonanozymes[J]. Anal. Chem., 2023, 95(33): 12435-12442. |
38 | ZHANG Y, ZHAO T, ZHANG X, et al.. Photothermal and colorimetric dual-readout silver ions determination utilizing the oxidase-mimicking activity of MnO2 nanosheets[J/OL]. Sensor. Actuat. BChem., 2021, 346: 130494[2023-10-10]. . |
39 | KIM Y, CHA S, KIM J H, et al.. Electrochromic response and control of plasmonic metal nanoparticles[J]. Nanoscale, 2021, 13(21): 9541-9552. |
40 | JAYEOYE T J, MA J, RUJIRALAI T. Creatinine assembled on dithiobis (succinimidylpropionate) modified gold nanoparticles as a sensitive and selective colorimetric nanoprobe for silver ion detection[J/OL]. J. Environ. Chem. Eng., 2021, 9(4): 105770[2023-12-22]. . |
41 | ZHAO J, LIU G, LU Y, et al.. An ultra-sensitive colorimetric detection of Ag+ ions based on etching AuNP@MnO2 nanoparticles with glutathione by using dark field optical microscopy[J/OL]. Sens. Actuat. B-Chem., 2021, 330: 129382[2023-12-22]. . |
42 | JIN J C, WANG B B, XU Z Q, et al.. A novel method for the detection of silver ions with carbon dots: excellent selectivity, fast response, low detection limit and good applicability[J]. Sens. Actuat. B-Chem., 2018, 267: 627-635. |
43 | SUNITHA DEVI B, LAXMI B, LINGA RAJU C, et al.. Colorimetric detection of silver ions in different pH conditions using Pongamia pinnata leaf extract derived carbon dots[J/OL]. Mater. Lett., 2023, 336: 133872[2023-12-22]. . |
44 | ZHU D, LIU B, WEI G. Two-dimensional material-based colorimetric biosensors: a review[J/OL]. Biosensors, 2021, 11(8): 259[2023-12-22]. . |
45 | ZHONG Y H, HE Y, ZHOU H Q, et al.. Enhanced stability and colorimetric detection on Ag(Ⅰ) ions of a methylthio-functionalized Zn(Ⅱ) metal-organic framework[J]. J. Mater. Chem. C, 2021, 9(15): 5088-5092. |
46 | ZHOU J, YANG T, CHEN J, et al.. Two-dimensional nanomaterial-based plasmonic sensing applications: advances and challenges[J/OL]. Coord. Chem. Rev., 2020, 410: 213218[2023-12-22]. . |
47 | WANG Y, WANG S, DONG N, et al.. Titanium carbide MXenes mediated In situ reduction allows label-free and visualized nanoplasmonic sensing of silver ions[J]. Anal. Chem., 2020, 92(6): 4623-4629. |
[1] | 刘星宇, 赵国利, 李雪婧. 氢气在医学领域的应用进展[J]. 生物技术进展, 2024, 14(1): 102-110. |
[2] | 曾雨冰, 何学佳, 刘帆, 裴培, 王珊. TET酶的生物学功能及相关机制的研究进展[J]. 生物技术进展, 2022, 12(5): 721-727. |
[3] | 余卉茹, 纪艺, 彭城, 徐晓丽, 汪小福, 孙梅好, 陈笑芸. 肉类掺假检测技术研究进展[J]. 生物技术进展, 2022, 12(2): 213-221. |
[4] | 张会, 王凯. 植物功能着丝粒DNA研究进展[J]. 生物技术进展, 2022, 12(1): 1-9. |
[5] | 甄珍, 窦迎港, 刘晓兰. 玉米蛋白粉DNA提取方法比较研究[J]. 生物技术进展, 2022, 12(1): 99-104. |
[6] | 姚婷婷, 刘梦昱, 赵鹏翔, 王惠, 仪杨, 谢飞, YAO Mawulikplimi Adzavon. 替莫唑胺治疗胶质母细胞瘤的耐药性产生机制研究进展[J]. 生物技术进展, 2021, 11(6): 705-710. |
[7] | 严安心,陈静,刘洪迪,李永久,彭柱,赵禾苗,李亮,赵兴春. 人D6S1043-1型STR质粒DNA标准物质的研制[J]. 生物技术进展, 2020, 10(6): 630-636. |
[8] | 薛琴琴,,韩贝贝,吴雪晴,李沛,李莹莹,,吴庆钰. 纳米材料在农作物领域的应用及展望[J]. 生物技术进展, 2020, 10(6): 655-660. |
[9] | 陈硕,高佳奇,王迪,龙艳,李亮,张晓. DNA四面体纳米结构及其在生物技术领域的应用进展[J]. 生物技术进展, 2020, 10(6): 661-667. |
[10] | 徐蕾,肖桂清,盛晓菁,戚智青,刁勇. PCR增强剂在核酸体外扩增检测技术的研究进展[J]. 生物技术进展, 2020, 10(2): 137-143. |
[11] | 黄春蒙,,朱鹏宇,王智,王晨光,杜智欣,魏霜4,张永江,付伟. 基于RNAi技术的转基因植物研究进展[J]. 生物技术进展, 2020, 10(1): 1-9. |
[12] | 马翾,张洋子,许文涛,. 功能核酸DNA水凝胶的理化特性及应用进展[J]. 生物技术进展, 2019, 9(6): 545-553. |
[13] | 马翾,张洋子,许文涛,. 功能核酸DNA水凝胶的制备与组装[J]. 生物技术进展, 2019, 9(6): 554-562. |
[14] | 张玉昆,,安娜,刘卫晓,宛煜嵩,金芜军,李亮,张晓. 基于表面等离子体共振和电化学联用的DNA传感器研究进展[J]. 生物技术进展, 2019, 9(6): 592-598. |
[15] | 李静,王莉,道敏,胡平,肖逸,韩建林,王玉涛. 喀喇昆仑-帕米尔地区牦牛mtDNA Cytb遗传多样性及系统发育分析[J]. 生物技术进展, 2019, 9(5): 509-517. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部