1 |
许文涛,杨敏,朱龙佼,等.功能核酸概念的内涵与外延[J].生物技术进展,2021,11(4):446-454.
|
2 |
XU W, HE W, DU Z, et al.. Functional nucleic acid nanomaterials: development, properties, and applications[J]. Angew. Chem. Int. Ed., 2021, 60(13): 6890-6918.
|
3 |
马翾,张洋子,许文涛. 功能核酸DNA水凝胶的理化特性及应用进展[J].生物技术进展,2019,9(6):545-553.
|
4 |
SEEMAN N C. Nucleic acid junctions and lattices [J]. J. Theor. Biol., 1982, 99(2): 237-247.
|
5 |
LI J, SONG D, WANG L. Supramolecular polymer complexes based on specific molecular recognition: DNA and its synthetic mimics[J]. Curr. Org. Chem., 2015, 19, 51: 303-318.
|
6 |
FU T, SEEMAN N. DNA double-crossover molecules[J]. Biochemistry, 1993, 32(13), 3211-3220.
|
7 |
ROTHEMUND P W K. Folding DNA to create nanoscale shapes and patterns [J]. Nature, 2006, 440(7082): 297-302.
|
8 |
SONG H, ZHANG Y, CHENG P, et al.. A rapidly self-assembling soft-brush DNA hydrogel based on RCA products[J]. Chem. Commun., 2019, 55(37): 5375-5378.
|
9 |
SEYHAN A, VLASSOV A, JOHNSTON B. RNA interference from multimeric shRNAs generated by rolling circle transcription [J]. Oligonucleotides, 2006, 16: 353-363.
|
10 |
YOO H, JUNG H, KIM S A, et al.. Multivalent comb-type aptamer-siRNA conjugates for efficient and selective intracellular delivery [J]. Chem. Commun., 2014, 50(51): 6765-6767.
|
11 |
SU Y, CHU H, TIAN J, et al.. Insight into the nanomaterials enhancement mechanism of nucleic acid amplification reactions[J/OL]. Trends Anal. Chem., 2021, 137: 116221[2021-12-31]. .
|
12 |
SONG L, JIANG Q, LIU J, et al.. DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance[J]. Nanoscale, 2017, 9(23): 7750-7754.
|
13 |
WANG Y, SHANG X, LIU J, et al.. ATP mediated rolling circle amplification and opening DNA-gate for drug delivery to cell [J]. Talanta, 2018, 176: 652-658.
|
14 |
MA Q, QIAN W, TAO W, et al.. Delivery of curcumin nanoliposomes using surface modified with CD133 aptamers for prostate cancer [J]. Drug Des., Dev. Ther., 2019, 13: 4021-4033.
|
15 |
WILSON D S, SZOSTAK J W. In vitro selection of functional nucleic acids[J]. Annu. Rev. Biochem., 1999, 68(1): 611-647.
|
16 |
ZHANG P, OUYANG Y, SOHN Y S, et al.. pH- and miRNA-responsive DNA-tetrahedra/metal-organic framework conjugates: functional sense-and-treat carriers [J]. ACS Nano, 2021, 15(4): 6645-6657.
|
17 |
LI F, YU W, ZHANG J, et al.. Spatiotemporally programmable cascade hybridization of hairpin DNA in polymeric nanoframework for precise siRNA delivery[J/OL]. Nat. Commun., 2021, 12(1): 1138[2021-12-31]. .
|
18 |
WANG Z, SONG L, LIU Q, et al.. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy [J]. Angew. Chem., Int. Ed., 2021, 60(5): 2594-2598.
|
19 |
ZHANG Y, ZHU L, TIAN J, et al.. Smart and functionalized development of nucleic acid-based hydrogels: assembly strategies, recent advances, and challenges[J/OL]. Adv. Sci., 2021, 8(14): 2100216 [2021-12-31]. .
|
20 |
WIKE-HOOLEY J L, HAVEMAN J, REINHOLD H S. The relevance of tumour pH to the treatment of malignant disease[J]. Radiother. Oncol., 1984, 2(4): 343-366.
|
21 |
KIM J, JO C, LIM W G, et al.. Programmed nanoparticle-loaded nanoparticles for deep-penetrating 3D cancer therapy[J/OL]. Adv. Mater., 2018, 30(29): e1707557[2021-12-31]. .
|
22 |
ZHAO H, XUEXIA Y, YU J, et al.. Magnesium stabilized multifunctional DNA nanoparticles for tumor-targeted and pH-responsive drug delivery[J]. ACS Appl. Mater. Interfaces, 2018, 10(18): 15418-15427.
|
23 |
杜再慧,罗云波,朱龙佼,等. DNA特殊二级结构及其应用进展[J].生物技术进展,2019,9(6):563-570.
|
24 |
KOHMAN R E, CHA S S, MAN H Y, et al.. Light-triggered release of bioactive molecules from DNA nanostructures[J]. Nano Lett., 2016, 16(4): 2781-2785.
|
25 |
ESKIIZMIR G, ERMERTCAN A T, YAPICI K. Chapter 17 - Nanomaterials: promising structures for the management of oral cancer[M]//ANDRONESCU E, GRUMEZESCU A M. Nanostructures for oral medicine. Amsterdam: Elsevier, 2017: 511-544.
|
26 |
WU J, LI N, YAO Y, et al.. DNA-stabilized silver nanoclusters for label-free fluorescence imaging of cell surface glycans and fluorescence guided photothermal therapy [J]. Anal. Chem., 2018, 90(24): 14368-14375.
|
27 |
HAMNER K L, ALEXANDER C M, COOPERSMITH K, et al.. Using temperature-sensitive smart polymers to regulate DNA-mediated nanoassembly and encoded nanocarrier drug release [J]. ACS Nano, 2013, 7(8): 7011-7020.
|
28 |
JUUL S, IACOVELLI F, FALCONI M, et al.. Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage[J]. ACS Nano, 2013, 7(11): 9724-9734.
|
29 |
MA Y, WANG Z, MA Y, et al.. A Telomerase-responsive DNA icosahedron for precise delivery of platinum nanodrugs to cisplatin-resistant cancer[J]. Angew. Chem., Int. Ed., 2018, 57(19): 5389-5393.
|
30 |
BUJOLD K E, HSU J C C, SLEIMAN H F. Optimized DNA "nanosuitcases" for encapsulation and conditional release of siRNA [J]. J. Am. Chem. Soc., 2016, 138(42): 14030-14038.
|
31 |
LI S, JIANG Q, LIU S, et al.. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo[J]. Nat. Biotechnol., 2018, 36(3): 258-264.
|
32 |
GUO Y, ZHANG J, DING F, et al.. Stressing the role of DNA as a drug carrier: synthesis of DNA-drug conjugates through grafting chemotherapeutics onto phosphorothioate oligonucleotides[J/OL]. Adv. Mater., 2019, 31(16): 1807533[2021-12-31].
|
33 |
ZHANG J, GUO Y, PAN G, et al.. Injectable drug-conjugated DNA hydrogel for local chemotherapy to prevent tumor recurrence [J]. ACS Appl. Mater. Interfaces, 2020, 12(19): 21441-21449.
|
34 |
PAN M, LI W, YANG J, et al.. Plumbagin-loaded aptamer-targeted poly D,L-lactic-co-glycolic acid-b-polyethylene glycol nanoparticles for prostate cancer therapy[J/OL]. Medicine, 2017, 96(30): e7405[2021-12-31]. .
|
35 |
DING L, LI J, WU C, et al.. A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer[J]. J. Mater. Chem. B, 2020, 8(16): 3527-35233.
|