生物技术进展 ›› 2017, Vol. 7 ›› Issue (5): 439-444.DOI: 10.19586/j.2095-2341.2017.0096

• 硒与农业 • 上一篇    下一篇

硒生物营养强化小麦在发芽过程中的生理特征研究

马丽佳1, 张泽洲1,2, 袁林喜1*, 尹雪斌3*   

  1. 1.江苏省硒生物工程技术研究中心, 江苏 苏州 215123; 2.中国地质大学(武汉), 生物地质与环境地质国家重点实验室, 武汉 430074; 3.中国科学技术大学苏州研究院, 江苏 苏州 215123
  • 收稿日期:2017-07-30 出版日期:2017-09-25 发布日期:2017-08-22
  • 通讯作者: 袁林喜,研究员,博士,研究方向为生物营养强化与应用。E-mail: yuanlinxi001@gmail.com;尹雪斌,副教授,博士,研究方向为功能农业研究与开发。E-mail: xbyin@ustc.edu.cn
  • 作者简介:马丽佳,硕士,研究方向为硒生物营养强化。E-mail:malijia@163.com。
  • 基金资助:
    国家自然科学基金项目(31400091)资助。

Study on Physiological Characterization of Selenium-biofortified Wheat During Germination

MA Lijia, ZHANG Zezhou, YUAN Linxi, YIN Xuebin   

  1. 1.Jiangsu Bio-engineering Research Centre of Selenium, Jiangsu Suzhou 215123, China; 2.State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; 3.Suzhou Institute for Advanced Studies, University of Science and Technology of China, Jiangsu Suzhou 215123, China
  • Received:2017-07-30 Online:2017-09-25 Published:2017-08-22

摘要: 选取硒生物营养强化种植获得的小麦品种扬麦16的低硒组A(硒含量5.245 μg/g)、高硒组B(硒含量47.850 μg/g)和非强化组CK(硒含量0.039 μg/g)为研究对象,通过监测发芽过程中的发芽参数(芽长、根长、发芽率)、芽体的总硒和硒形态、酶[淀粉酶(AMS)、谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)]活力、总抗氧化能力(T-AOC)以及过氧化氢(H2O2)、丙二醛(MDA)含量的变化,探讨硒生物营养强化转化的内源硒对小麦发芽过程生理行为的影响。结果显示,内源硒对麦芽的根长、芽长没有明显影响,但适宜浓度的内源硒有助于提高小麦的发芽率。高硒小麦籽粒可以通过发芽过程将部分内源硒代蛋氨酸(SeMet)转化为硒代胱氨酸(SeCys2)。内源硒有助于增强α-淀粉酶、抗氧化酶(GSH-Px和SOD)的活力,同时,可提高麦芽的总抗氧化能力(T-AOC)、降低麦芽体内H2O2和MDA的积累。

关键词: 硒生物营养强化, 小麦, 发芽, 谷胱甘肽过氧化物酶, 总抗氧化能力

Abstract: The selenium (Se)-biofortified wheat cultivar, Yangmai 16, with low-Se level A (5.245 μg Se/g), high-Se level B (47.850 μg Se/g) and control group CK (0.039 μg Se/g) were selected to germinate, and the germination parameters (root length, sprout length and germination rate), the total Se contents and Se species, and the physiological metabolism activities (AMS, GSH-Px, SOD, T-AOC, H2O2, MDA) were monitored during the different germination phases. The results revealed that there were no differences on root length and sprout length among the three groups, but increased germination rates could be observed with moderate Se contents in wheats. SeMet could be transformed into SeCys2 in high-Se level B during germination. Moreover, the biofortified Se in group A and B could obviously improve the activities of AMS, GSH-Px and SOD, increase the capacity of T-AOC, and reduce the accumulation of H2O2 and MDA.

Key words: selenium biofortification, wheat, germination, GSH-Px, T-AOC