[1] |
ZUCCHELLI C, TAMBURRI S, FILOSA G, et al.. Sp140 is a multi-SUMO-1 target and its PHD finger promotes SUM Oylation of the adjacent Bromo domain[J]. Biochim. Biophys. Acta Gen. Subj., 2019, 1863(2): 456-465.
|
[2] |
FRASCHILLA I, JEFFREY K L. The speckled protein (SP) family: immunity's chromatin readers[J]. Trends Immunol., 2020, 41(7): 572-585.
|
[3] |
SAARE M, HÄMARIK U, VENTA R, et al.. SP140L, an evolutionarily recent member of the SP100 family, is an autoantigen in primary biliary cirrhosis[J/OL]. J. Immunol. Res., 2015, 2015: 526518[2025-03-10]. .
|
[4] |
AMATULLAH H, FRASCHILLA I, DIGUMARTHI S, et al.. Epigenetic reader SP140 loss of function drives Crohn's disease due to uncontrolled macrophage topoisomerases[J]. Cell, 2022, 185(17): 3232-3247.
|
[5] |
BLOCH D B, DE LA MONTE S M, GUIGAOURI P, et al.. Identification and characterization of a leukocyte-specific component of the nuclear body[J]. J. Biol. Chem., 1996, 271(46): 29198-29204.
|
[6] |
ZUCCHELLI C, TAMBURRI S, QUILICI G, et al.. Structure of human Sp140 PHD finger: an atypical fold interacting with Pin1[J]. FEBS J., 2014, 281(1): 216-231.
|
[7] |
BLOCH D B, NAKAJIMA A, GULICK T, et al.. Sp110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator[J]. Mol. Cell. Biol., 2000, 20(16): 6138-6146.
|
[8] |
BLOCH D B, DCHICHE J, ORTH D, et al.. Structural and functional heterogeneity of nuclear bodies[J]. Mol. Cell. Biol., 1999, 19(6): 4423-4430.
|
[9] |
BOCOVA L, HUBENS W, ENGEL C, et al.. Quantification of hematopoietic stem and progenitor cells by targeted DNA methylation analysis[J/OL]. Clin. Epigenet., 2023, 15(1): 105[2025-03-10]. .
|
[10] |
LUO Y, SUN F, PENG X, et al.. Integrated bioinformatics analysis to identify abnormal methylated differentially expressed genes for predicting prognosis of human colon cancer[J]. Int. J. Gen. Med., 2021, 14: 4745-4756.
|
[11] |
JI D X, WITT K C, KOTOV D I, et al..Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons[J/OL].Elife, 2021, 10:e67290[2025-03-10]. .
|
[12] |
NAKAMURA H, HIKICHI H, SETO S, et al.. Transcriptional regulators SP110 and SP140 modulate inflammatory response genes in Mycobacterium tuberculosis-infected human macrophages[J/OL]. Microbiol. Spectr., 2024, 12(10): e0010124[2025-03-10]. .
|
[13] |
SUMIDA T S, DULBERG S, SCHUPP J C, et al.. Type 1 interferon transcriptional network regulates expression of coinhibitory receptors in human T cells[J]. Nat. Immunol., 2022, 23(4): 632-642.
|
[14] |
ZHANG T, LIU H, JIAO L, et al.. Genetic characteristics involving the PD-1/PD-L1/L2 and CD73/A2aR axes and the immunosuppressive microenvironment in DLBCL[J/OL]. J. Immunother. Cancer, 2022, 10(4): e004114[2025-03-10]. .
|
[15] |
GHIBOUB M, BELL M, SINKEVICIUTE D, et al.. The epigenetic reader protein SP140 regulates dendritic cell activation, maturation and tolerogenic potential[J]. Curr. Issues Mol. Biol., 2023, 45(5): 4228-4245.
|
[16] |
GHIBOUB M, KOSTER J, CRAGGS P D, et al.. Modulation of macrophage inflammatory function through selective inhibition of the epigenetic reader protein SP140[J/OL]. BMC Biol., 2022, 20(1): 182[2025-03-10]. .
|
[17] |
TANAGALA K K K, MORIN-BAXTER J, CARVAJAL R, et al.. SP140 inhibits STAT1 signaling, induces IFN-γ in tumor-associated macrophages, and is a predictive biomarker of immunotherapy response[J/OL]. J. Immunother. Cancer, 2022, 10(12): e005088[2025-03-10]. .
|
[18] |
LI Z, XUE Y, HUANG X, et al.. Stratifying osteosarcoma patients using an epigenetic modification-related prognostic signature: implications for immunotherapy and chemotherapy selection[J]. Transl. Cancer Res., 2024, 13(7): 3556-3574.
|
[19] |
MATSUSHITA K, LI X, NAKAMURA Y, et al.. The role of Sp140 revealed in IgE and mast cell responses in Collaborative Cross mice[J/OL]. JCI Insight, 2021, 6(12): e146572[2025-03-10]. .
|
[20] |
KARAKY M, FEDETZ M, POTENCIANO V, et al.. SP140 regulates the expression of immune-related genes associated with multiple sclerosis and other autoimmune diseases by NF-κB inhibition[J]. Hum. Mol. Genet., 2018, 27(23): 4012-4023.
|
[21] |
WEINER A B, YU C Y, KINI M, et al.. High intratumoral plasma cells content in primary prostate cancer defines a subset of tumors with potential susceptibility to immune-based treatments[J]. Prostate Cancer Prostatic Dis., 2023, 26(1): 105-112.
|
[22] |
SHEN Y, NUSSBAUM Y I, MANJUNATH Y, et al.. TBX21 methylation as a potential regulator of immune suppression in CMS1 subtype colorectal cancer[J/OL]. Cancers, 2022, 14(19): 4594[2025-03-10]. .
|
[23] |
GRANITO A, YANG W H, MURATORI L, et al.. PML nuclear body component Sp140 is a novel autoantigen in primary biliary cirrhosis[J]. Am. J. Gastroenterol., 2010, 105(1): 125-131.
|
[24] |
MATESANZ F, POTENCIANO V, FEDETZ M, et al.. A functional variant that affects exon-skipping and protein expression of SP140 as genetic mechanism predisposing to multiple sclerosis[J]. Hum. Mol. Genet., 2015, 24(19): 5619-5627.
|
[25] |
PERES L C, COLIN-LEITZINGER C M, TENG M, et al.. Racial and ethnic differences in clonal hematopoiesis, tumor markers, and outcomes of patients with multiple myeloma[J]. Blood Adv., 2022, 6(12): 3767-3778.
|
[26] |
MEHTA S, CRONKITE D A, BASAVAPPA M, et al.. Maintenance of macrophage transcriptional programs and intestinal homeostasis by epigenetic reader SP140[J/OL]. Sci. Immunol., 2017, 2(9): eaag3160[2025-03-10]. .
|
[27] |
PUTSCHER E, HECKER M, FITZNER B, et al.. Genetic risk variants for multiple sclerosis are linked to differences in alternative pre-mRNA splicing[J/OL]. Front. Immunol., 2022, 13: 931831[2025-03-10]. .
|
[28] |
SADDALA M S, YANG X, TANG S, et al.. Transcriptome-wide analysis reveals core sets of transcriptional regulators of sensome and inflammation genes in retinal microglia[J]. Genomics, 2021, 113(5): 3058-3071.
|
[29] |
LI X, LI G, LI L, et al.. SP140 inhibitor suppressing TRIM22 expression regulates glioma progress through PI3K/AKT signaling pathway[J/OL]. Brain Behav., 2024, 14(3): e3465[2025-03-10]. .
|
[30] |
刘梦昱, 谢飞, 张鑫, 等. 胶质母细胞瘤免疫治疗研究进展[J]. 生物技术进展, 2019, 9(3): 223-230.
|
|
LIU M Y, XIE F, ZHANG X, et al.. Review of immunotherapy for glioblastoma[J]. Curr. Biotechnol., 2019, 9(3): 223-230.
|
[31] |
ZHOU H, WU L, YU L, et al.. Identify a DNA damage repair gene signature for predicting prognosis and immunotherapy response in cervical squamous cell carcinoma[J/OL]. J. Oncol., 2022, 2022: 8736575[2025-03-10]. .
|
[32] |
YU B, GENG C, WU Z, et al.. A CIC-related-epigenetic factors-based model associated with prediction, the tumor microenvironment and drug sensitivity in osteosarcoma[J/OL]. Sci. Rep., 2024, 14(1): 1308[2025-03-10]. .
|
[33] |
KAROLOVÁ J, KAZANTSEV D, SVATOŇ M, et al.. Sequencing-based analysis of clonal evolution of 25 mantle cell lymphoma patients at diagnosis and after failure of standard immunochemotherapy[J]. Am. J. Hematol., 2023, 98(10): 1627-1636.
|
[34] |
FRASCHILLA I, AMATULLAH H, URAHMAN R, et al.. Immune chromatin reader SP140 regulates microbiota and risk for inflammatory bowel disease[J]. Cell Host Microbe, 2022, 30(10): 1370-1381.
|
[35] |
CHEN Y C, CHEN T W, SU M C, et al.. Whole genome DNA methylation analysis of obstructive sleep apnea: IL1R2, NPR2, AR, SP140 methylation and clinical phenotype[J]. Sleep, 2016, 39(4): 743-755.
|
[36] |
REINDEL R, BISCHOF J, KIM K Y A, et al.. CD84 is markedly up-regulated in Kawasaki disease arteriopathy[J]. Clin. Exp. Immunol., 2014, 177(1): 203-211.
|
[37] |
周建荣, 傅仲学, 魏莲枝, 等. 蛋白质组学方法鉴定喉鳞状细胞癌中的肿瘤相关蛋白[J]. 中华耳鼻咽喉头颈外科杂志, 2007, 42(12): 934-938.
|
|
ZHOU J R, FU Z X, WEI L Z, et al.. Identification of tumor-associated proteins in laryngeal squamons cell carcinoma by proteomics[J]. Chin. J. Otorhinolaryngol. Head Neck Surg., 2007, 42(12): 934-938.
|
[38] |
MADANI N, MILLETTE R, PLATT E J, et al.. Implication of the lymphocyte-specific nuclear body protein Sp140 in an innate response to human immunodeficiency virus type 1[J]. J. Virol., 2002, 76(21): 11133-11138.
|
[39] |
DZIULKO A K, ALLEN H, CHUONG E B. An endogenous retrovirus regulates tumor-specific expression of the immune transcriptional regulator SP140Free[J]. Hum. Mol. Genet., 2024, 33(16): 1454-1464.
|
[40] |
YI S, YAN Y, JIN M, et al.. Genomic and transcriptomic profiling reveals distinct molecular subsets associated with outcomes in mantle cell lymphoma[J/OL]. J. Clin. Invest., 2022, 132(3): e153283[2025-03-10]. .
|
[41] |
JIANG P, DESAI A, YE H. Progress in molecular feature of smoldering mantle cell lymphoma[J/OL]. Exp. Hematol. Oncol., 2021, 10(1): 41[2025-03-10]. .
|