生物技术进展 ›› 2024, Vol. 14 ›› Issue (3): 349-359.DOI: 10.19586/j.2095-2341.2024.0011
• 进展评述 • 上一篇
杨得正1,2(), 付惠仙3, 肖素勤2, 雷凌云1,2, 李天时3, 程在全2, 刘丽2(
)
收稿日期:
2024-01-18
接受日期:
2024-03-21
出版日期:
2024-05-25
发布日期:
2024-06-18
通讯作者:
刘丽
作者简介:
杨得正 E-mail: 17861510360@163.com;
基金资助:
Dezheng YANG1,2(), Huixian FU3, Suqin XIAO2, Lingyun LEI1,2, Tianshi LI3, Zaiquan CHENG2, Li LIU2(
)
Received:
2024-01-18
Accepted:
2024-03-21
Online:
2024-05-25
Published:
2024-06-18
Contact:
Li LIU
摘要:
高产是水稻育种的主要目标之一,而水稻株型对水稻产量具有决定性作用。从基因层面上解析水稻株型的形成机理是利用分子育种技术培育理想株型的前提和条件。从理想株型的概念、叶片形态和穗部性状、水稻株型的重要激素调控机制、株型相关基因的克隆与功能研究等方面总结了水稻理想株型的研究进展,分析了现有研究存在的问题,并提出未来水稻株型的研究方向,以期为通过株型改良提高水稻产量及培育超高产水稻品种提供参考。
中图分类号:
杨得正, 付惠仙, 肖素勤, 雷凌云, 李天时, 程在全, 刘丽. 水稻株型的遗传基础与分子调控机理研究进展[J]. 生物技术进展, 2024, 14(3): 349-359.
Dezheng YANG, Huixian FU, Suqin XIAO, Lingyun LEI, Tianshi LI, Zaiquan CHENG, Li LIU. Research Progress on Genetic Basis and Molecular Regulation Mechanism of Rice Plant Architecture[J]. Current Biotechnology, 2024, 14(3): 349-359.
性状 | 亲本组合 | 群体类型 | 群体大小 | QTLs | 贡献率 | 株型性状 | 参考文献 |
---|---|---|---|---|---|---|---|
株高 | IR24×Asominori | IAS/IAS | 132 | 8 | 5.64%~13.87% | 株高 | [ |
日本晴×泸恢99 | RIL/F8 | 188 | 3 | 1.08%~3.16% | 株高 | [ | |
BG1×XLJ | RIL/F2 | 269 | 2 | 5.75% | 株高 | [ | |
沈农265×LTH | RIL/F2 | 126 | 4 | 11.30%~60.40% | 株高 | [ | |
嘉早17×D50 | RIL/F2:3 | 225 | 6 | 1.76%~15.34% | 株高 | [ | |
多亲本 | MAGIC | 440 | 5 | 3.39%~90.22% | 株高 | [ | |
龙稻5号×中优早8号 | RIL/F7 | 180 | 7 | 2.71%~36.98% | 株高 | [ | |
叶片 | Z481×日本晴 | RIL/F2 | 150 | 12 | 4.15%~89.81% | 剑叶长、宽、长宽比和叶面积 | [ |
汕优63 | RIL/F10 | 241 | 41 | 3.19%~26.23% | 剑叶、倒二叶、倒三叶 | [ | |
两优培九(LYP9) | RIL/F2 | 132 | 43 | 4.00%~24.00% | 剑叶大小 | [ | |
日本晴×9311 | RIL/F2 | 189 | 42 | 5.01%~27.04% | 剑叶长、叶宽、叶面积 | [ | |
广陆矮4号×日本晴 | CSSLs | 175 | 20 | 0.24%~10.90% | 叶长、叶宽 | [ | |
华占×热研2号 | RIL/F12 | 120 | 35 | 叶长、叶宽、叶面积 | [ | ||
日本晴×H71D | RIL/F2 | 310 | 38 | 7.17%~52.62% | 一次枝梗、二次枝梗、穗长、穗粒数、着粒密度 | [ | |
越南传统水稻、Nipponbare, IR64, Azucena | RIL/F2 | 159 | 29 | 14.00%~20.00% | 二次枝梗、穗颖花数 | [ | |
Koshihikari×Yamadanishiki | RIL/F2 | 190 | 3 | 2.90%~55.10% | 有效穗、穗粒数 | [ | |
穗部 | 龙稻5号×中优早8号 | RIL/F7 | 180 | 16 | 8.53%~38.09% | 一次枝梗、二次枝梗、穗颖花数、穗粒数、结实率、着粒密度 | [ |
Maybelle×Baiyeqiu | DH | 168 | 24 | 3.86%~30.86% | 一次枝梗、二次枝梗、穗长 | [ | |
Aromatic, Aus, Indica, TEJ, TRJ, Admixtures | RIL/F2 | 183 | 42 | 3.50%~10.50% | 一次枝梗、二次枝梗、花序长度、有效穗 | [ | |
日本晴×Z746 | CSSSL/F2 | 164 | 16 | 3.35%~60.28% | 二次枝梗 | [ |
表1 水稻主要株型的相关QTL定位
Table 1 The QTL location of major plant architecture in rice
性状 | 亲本组合 | 群体类型 | 群体大小 | QTLs | 贡献率 | 株型性状 | 参考文献 |
---|---|---|---|---|---|---|---|
株高 | IR24×Asominori | IAS/IAS | 132 | 8 | 5.64%~13.87% | 株高 | [ |
日本晴×泸恢99 | RIL/F8 | 188 | 3 | 1.08%~3.16% | 株高 | [ | |
BG1×XLJ | RIL/F2 | 269 | 2 | 5.75% | 株高 | [ | |
沈农265×LTH | RIL/F2 | 126 | 4 | 11.30%~60.40% | 株高 | [ | |
嘉早17×D50 | RIL/F2:3 | 225 | 6 | 1.76%~15.34% | 株高 | [ | |
多亲本 | MAGIC | 440 | 5 | 3.39%~90.22% | 株高 | [ | |
龙稻5号×中优早8号 | RIL/F7 | 180 | 7 | 2.71%~36.98% | 株高 | [ | |
叶片 | Z481×日本晴 | RIL/F2 | 150 | 12 | 4.15%~89.81% | 剑叶长、宽、长宽比和叶面积 | [ |
汕优63 | RIL/F10 | 241 | 41 | 3.19%~26.23% | 剑叶、倒二叶、倒三叶 | [ | |
两优培九(LYP9) | RIL/F2 | 132 | 43 | 4.00%~24.00% | 剑叶大小 | [ | |
日本晴×9311 | RIL/F2 | 189 | 42 | 5.01%~27.04% | 剑叶长、叶宽、叶面积 | [ | |
广陆矮4号×日本晴 | CSSLs | 175 | 20 | 0.24%~10.90% | 叶长、叶宽 | [ | |
华占×热研2号 | RIL/F12 | 120 | 35 | 叶长、叶宽、叶面积 | [ | ||
日本晴×H71D | RIL/F2 | 310 | 38 | 7.17%~52.62% | 一次枝梗、二次枝梗、穗长、穗粒数、着粒密度 | [ | |
越南传统水稻、Nipponbare, IR64, Azucena | RIL/F2 | 159 | 29 | 14.00%~20.00% | 二次枝梗、穗颖花数 | [ | |
Koshihikari×Yamadanishiki | RIL/F2 | 190 | 3 | 2.90%~55.10% | 有效穗、穗粒数 | [ | |
穗部 | 龙稻5号×中优早8号 | RIL/F7 | 180 | 16 | 8.53%~38.09% | 一次枝梗、二次枝梗、穗颖花数、穗粒数、结实率、着粒密度 | [ |
Maybelle×Baiyeqiu | DH | 168 | 24 | 3.86%~30.86% | 一次枝梗、二次枝梗、穗长 | [ | |
Aromatic, Aus, Indica, TEJ, TRJ, Admixtures | RIL/F2 | 183 | 42 | 3.50%~10.50% | 一次枝梗、二次枝梗、花序长度、有效穗 | [ | |
日本晴×Z746 | CSSSL/F2 | 164 | 16 | 3.35%~60.28% | 二次枝梗 | [ |
性状 | 基因 | 基因效应 | 参考文献 |
---|---|---|---|
株高 | TUD1 | 调控株高、粒型 | [ |
NAL1 | 调节株高、穗长、分蘖 | [ | |
NAL11 | 调控株高与分蘖、茎变粗、穗变大 | [ | |
GS6.1 | 控制株高 | [ | |
叶片 | ILA1 | 控制叶夹角 | [ |
WL1 | 调控叶宽 | [ | |
穗部 | RFL | 调控枝梗数与穗粒数 | [ |
TAW1 | 调控枝梗分生组织,影响枝梗数与穗粒数 | [ | |
RPAD | 调控分蘖、穗粒数 | [ | |
TAC1、TIG1 | 调控分蘖角 | [ | |
SP3 | 调控枝梗数、穗粒数 | [ | |
MFS4 | 正调控小穗花分生组织的分化 | [ |
表2 已被克隆的水稻株型相关基因
Table 2 The genes of plant architecture cloned in rice
性状 | 基因 | 基因效应 | 参考文献 |
---|---|---|---|
株高 | TUD1 | 调控株高、粒型 | [ |
NAL1 | 调节株高、穗长、分蘖 | [ | |
NAL11 | 调控株高与分蘖、茎变粗、穗变大 | [ | |
GS6.1 | 控制株高 | [ | |
叶片 | ILA1 | 控制叶夹角 | [ |
WL1 | 调控叶宽 | [ | |
穗部 | RFL | 调控枝梗数与穗粒数 | [ |
TAW1 | 调控枝梗分生组织,影响枝梗数与穗粒数 | [ | |
RPAD | 调控分蘖、穗粒数 | [ | |
TAC1、TIG1 | 调控分蘖角 | [ | |
SP3 | 调控枝梗数、穗粒数 | [ | |
MFS4 | 正调控小穗花分生组织的分化 | [ |
基因名称 | 编辑后结果 | 编辑方式 | 参考文献 |
---|---|---|---|
Sd8 | 降低水稻品种株高,减小叶夹角植株更加直立,且单株产量没有受到影响 | Cas9 | [ |
IPA1 | 穗重和穗数同时增加、株高变高、茎秆和根系粗壮 | Cas9 | [ |
Gn1a、CKX4、CKX11、CKX9 | 水稻的株高、穗长、粒大小和每穗粒数增加 | Cas12 | [ |
GW5、TGW6 | 粒重增加 | Cas9 | [ |
CKX5、CKX7 | 粒型变圆、饱满 | Cas12 | [ |
PIN5b | 穗长增长 | Cas9 | [ |
FWL4 | 有效分蘖变多、产量增加 | Cas9 | [ |
CAO1 | 水稻品种株高增加 | Cas12 | [ |
SD1/GA20ox2 | 株高增加 | Cas9 | [ |
表3 基因编辑的株型基因
Table 3 Gene-edited plant type genes
基因名称 | 编辑后结果 | 编辑方式 | 参考文献 |
---|---|---|---|
Sd8 | 降低水稻品种株高,减小叶夹角植株更加直立,且单株产量没有受到影响 | Cas9 | [ |
IPA1 | 穗重和穗数同时增加、株高变高、茎秆和根系粗壮 | Cas9 | [ |
Gn1a、CKX4、CKX11、CKX9 | 水稻的株高、穗长、粒大小和每穗粒数增加 | Cas12 | [ |
GW5、TGW6 | 粒重增加 | Cas9 | [ |
CKX5、CKX7 | 粒型变圆、饱满 | Cas12 | [ |
PIN5b | 穗长增长 | Cas9 | [ |
FWL4 | 有效分蘖变多、产量增加 | Cas9 | [ |
CAO1 | 水稻品种株高增加 | Cas12 | [ |
SD1/GA20ox2 | 株高增加 | Cas9 | [ |
1 | 张启发.绿色超级稻培育的设想[J].分子植物育种,2005,3(5):601-602. |
ZHANG Q F. Strategies for developing green super rice[J]. Mol. Plant Breed., 2005, 3(5): 601-602. | |
2 | BOYSEN J P. Die Stoffproduktion der Pflanzen[J]. Protoplasma, 1933, 18(4): 311. |
3 | HEATH O V S, GREGORY F G. The constancy of the mean net assimilation rate and its ecological importance[J]. Ann. Bot., 1938, 2(8): 811-818. |
4 | DONALD C M. The breeding of crop ideotypes[J]. Euphytica, 1968, 17(3): 385-403. |
5 | 马梦影,巩文靓,康雪蒙,等.水稻理想株型改良的研究进展[J].中国农学通报,2020,36(29):1-6. |
MA M Y, GONG W J, KANG X M, et al.. The improvement of ideal plant type of rice: a review[J]. Chin. Agric. Sci. Bull., 2020, 36(29): 1-6. | |
6 | 松岛省三(日.稻作的理论与技术[M].庞诚译.北京:中国农业出版社,1966. |
7 | 黄耀祥,陈顺佳,陈金灿,等.水稻丛化育种[J].广东农业科学,1983,10(1):1-6. |
HUANG Y X, CHEN S J, CHEN J C, et al.. Rice cluster breeding[J]. Guangdong Agric. Sci., 1983, 10(1): 1-6. | |
8 | 杨守仁.水稻株形研究的进展[J].作物学报,1982,8(3):205-210. |
YANG S R. Advances in plant morphology of rice[J]. Acta Agron. Sin., 1982, 8(3): 205-210. | |
9 | MONNA L, KITAZAWA N, YOSHINO R, et al.. Positional cloning of rice semidwarfing gene, sd-1: rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis[J]. DNA Res., 2002, 9(1): 11-17. |
10 | SPIELMEYER W, ELLIS M H, CHANDLER P M. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene[J]. Proc. Natl. Acad. Sci. USA, 2002, 99(13): 9043-9048. |
11 | ASHIKARI M, SAKAKIBARA H, LIN S, et al.. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745. |
12 | HU M, LV S, WU W, et al.. The domestication of plant architecture in African rice[J]. Plant J., 2018, 94(4): 661-669. |
13 | WU Y, ZHAO S, LI X, et al.. Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice[J/OL]. Nat. Commun., 2018, 9(1): 4157[2024-04-19]. . |
14 | ZHANG W, TAN L, SUN H, et al.. Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice[J]. Mol. Plant, 2019, 12(8): 1075-1089. |
15 | 王智权,江玲,尹长斌,等.水稻产量相关农艺性状杂种优势位点的定位[J].中国水稻科学,2013,27(6):569-576. |
WANG Z Q, JIANG L, YIN C B, et al.. QTL mapping of heterotic loci of yield-related traits in rice[J]. Chin. J. Rice Sci., 2013, 27(6): 569-576. | |
16 | 赵建国,蒋开锋,杨莉,等.水稻产量相关性状QTL定位[J].中国水稻科学,2013,27(4):344-352. |
ZHAO J G, JIANG K F, YANG L, et al.. QTL mapping for yield related components in A RIL population of rice[J]. Chin. J. Rice Sci., 2013, 27(4): 344-352. | |
17 | 占小登,于萍,林泽川,等.利用大粒籼/小粒粳重组自交系定位水稻生育期及产量相关性状QTL[J].中国水稻科学,2014,28(6):570-580. |
ZHAN X D, YU P, LIN Z C, et al.. QTL mapping of heading date and yield-related traits in rice using a recombination inbred lines (RILs) population derived from BG1/XLJ[J]. Chin. J. Rice Sci., 2014, 28(6): 570-580. | |
18 | 姚晓云,李清,刘进,等.不同环境下水稻株高和穗长的QTL分析[J].中国农业科学,2015,48(3):407-414. |
YAO X Y, LI Q, LIU J, et al.. Dissection of QTLs for plant height and panicle length traits in rice under different environment[J]. Sci. Agric. Sin., 2015, 48(3): 407-414. | |
19 | 圣忠华,朱子亮,马宁,等.超级稻品种中嘉早17产量相关性状QTL定位研究[J].中国水稻科学,2016,30(1):35-43. |
SHENG Z H, ZHU Z L, MA N, et al.. QTL mapping of yield related traits in super rice variety Zhongjiazao17[J]. Chin. J. Rice Sci., 2016, 30(1): 35-43. | |
20 | 申聪聪,朱亚军,陈凯,等.利用水稻MAGIC群体关联定位抽穗期和株高QTL[J].作物学报,2017,43(11):1611-1621. |
SHEN C C, ZHU Y J, CHEN K, et al.. Mapping of QTLs for heading date and plant height using MAGIC populations of rice[J]. Acta Agron. Sin., 2017, 43(11): 1611-1621. | |
21 | 沈文强,赵冰冰,于国玲,等.优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J].作物学报,2021,47(3):451-461. |
SHEN W Q, ZHAO B B, YU G L, et al.. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits[J]. Acta Agron. Sin., 2021, 47(3): 451-461. | |
22 | LI Y, ZHENG X, LI S, et al.. Quantitative trait loci analysis of leaf morphology in rice[J]. Chin. Rice Res. Newslett., 2001, 9(1): 2-4. |
23 | 沈波, 庄杰云, 张克勤, 等. 水稻叶片和根系活力的QTL定位[J]. 遗传学报, 2003, 30(12): 1133-1139. |
SHEN B, ZHUANG J Y, ZHANG K Q, et al.. QTLs mapping of leaf traits and root vitality in a recombinant inbred line population of rice[J]. Acta Genet. Sin., 2003, 30(12): 1133-1139. | |
24 | ZHANG B, YE W, REN D, et al.. Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice[J/OL]. Rice, 2015, 8(1): 39[2024-04-19]. . |
25 | 王兰,黄李超,代丽萍,等.利用日本晴/9311重组自交系群体定位水稻成熟期叶形相关性状QTL[J].中国水稻科学,2014,28(6):589-597. |
WANG L, HUANG L C, DAI L P, et al.. QTL analysis for rice leaf morphology at maturity stage using a recombinant inbred line population derived from a cross between nipponbare and 9311[J]. Chin. J. Rice Sci., 2014, 28(6): 589-597. | |
26 | 周勇,陶亚军,姚锐,等.利用染色体片段代换系定位水稻叶片形态性状QTL[J].作物学报,2017,43(11):1650-1657. |
ZHOU Y, TAO Y J, YAO R, et al.. QTL mapping for leaf morphological traits of rice using chromosome segment substitution lines[J]. Acta Agron. Sin., 2017, 43(11): 1650-1657. | |
27 | 王盛,叶涵斐,李三峰,等.水稻剑叶形态QTL定位及候选基因分析[J].中国科学:生命科学,2021,51(5):567-578. |
WANG S, YE H F, LI S F, et al.. QTL mapping and analysis of candidate genes in flag leaf morphology in rice[J]. Sci. Sin. Vitae, 2021, 51(5): 567-578. | |
28 | 吴亚辉,陶星星,肖武名,等.水稻穗部性状的QTL分析[J].作物学报,2014,40(2):214-221. |
WU Y H, TAO X X, XIAO W M, et al.. Dissection of QTLs for panicle traits in rice(Oryza sativa)[J]. Acta Agron. Sin., 2014, 40(2): 214-221. | |
29 | TA K N, KHONG N G, HA T L, et al.. A genome-wide association study using a Vietnamese landrace panel of rice (Oryza sativa) reveals new QTLs controlling panicle morphological traits[J/OL]. BMC Plant Biol., 2018, 18(1): 282[2024-04-19]. . |
30 | OKADA S, SASAKI M, YAMASAKI M. A novel rice QTL qOPW11 associated with panicle weight affects panicle and plant architecture[J/OL]. Rice, 2018, 11(1): 53[2024-04-19]. . |
31 | 刘进,姚晓云,刘丹,等.不同生态环境下水稻穗部性状QTL鉴定[J].中国水稻科学,2019,33(2):124-134. |
LIU J, YAO X Y, LIU D, et al.. Identification of QTL for panicle traits under multiple environments in rice (Oryza sativa L.)[J]. Chin. J. Rice Sci., 2019, 33(2): 124-134. | |
32 | XU X, ZHANG M, XU Q, et al.. Quantitative trait loci identification and genetic diversity analysis of panicle structure and grain shape in rice[J]. Plant Growth Regul., 2020, 90(1): 89-100. |
33 | THAPA R, TABIEN R E, SEPTININGSIH E M. Genome-wide association study to identify chromosomal regions related to panicle architecture in rice (Oryza sativa)[J]. Genet. Resour. Crop Evol., 2021, 68(7): 2849-2865. |
34 | 李儒香,周恺,王大川,等.水稻CSSL-Z481代换片段携带的穗部性状QTL分析及次级代换系培育[J].中国农业科学,2023,56(7):1228-1247. |
LI R X, ZHOU K, WANG D C, et al.. Analysis of QTLs and breeding of secondary substitution lines for panicle traits based on rice chromosome segment substitution line CSSL-Z481[J]. Sci. Agric. Sin., 2023, 56(7): 1228-1247. | |
35 | ASANO K, TAKASHI T, MIURA K, et al.. Genetic and molecular analysis of utility of sd1 alleles in rice breeding[J]. Breed. Sci., 2007, 57(1): 53-58. |
36 | 陈达刚,周新桥,李丽君,等.水稻叶厚性状的研究进展[J].农学学报,2015,5(11):22-25. |
CHEN D G, ZHOU X Q, LI L J, et al.. Research progress on rice (Oryza sativa. L) leaf thickness[J]. J. Agric., 2015, 5(11): 22-25. | |
37 | 许娜,徐铨,徐正进,等.水稻株型生理生态与遗传基础研究进展[J].作物学报,2023,49(7):1735-1746. |
XU N, XU Q, XU Z J, et al.. Research progress on physiological ecology and genetic basis of rice plant architecture[J]. Acta Agron. Sin., 2023, 49(7): 1735-1746. | |
38 | 高艳红,吕川根,王茂青,等.水稻卷叶性状QTL的初步定位[J].江苏农业学报,2007,23(1):5-10. |
GAO Y H, LV C G, WANG M Q, et al.. QTL mapping for rolled leaf gene in rice[J]. Jiangsu J. Agric. Sci., 2007, 23(1): 5-10. | |
39 | YOSHIDA S. Fundamentals of rice crop science[M]. Int. Rice Res. Inst., 1981. |
40 | 范玉斌,梁婉琪.水稻叶极性发育分子机制研究进展[J].上海交通大学学报(农业科学版),2014,32(1):16-22. |
FAN Y B, LIANG W Q. Research progress on the mechanism of leaf polarity establishment in rice[J]. J. Shanghai Jiao Tong Univ. Agric. Sci., 2014, 32(1): 16-22. | |
41 | IKEDA-KAWAKATSU K, MAEKAWA M, IZAWA T, et al.. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1[J]. Plant J., 2012, 69(1): 168-180. |
42 | WANG Y, ZENG X, LU L, et al.. MULTI-FLORET SPIKELET 4 (MFS4) regulates spikelet development and grain size in rice[J]. Rice Sci., 2021, 28(4): 344-357. |
43 | ZHANG D, YUAN Z. Molecular control of grass inflorescence development[J]. Annu. Rev. Plant Biol., 2014, 65: 553-578. |
44 | PAUTLER M, TANAKA W, YHIRANO H, et al.. Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition[J]. Plant Cell Physiol., 2013, 54(3): 302-312. |
45 | MIMIDA N, GOTO K, KOBAYASHI Y, et al.. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue[J]. Genes Cells, 2001, 6(4): 327-336. |
46 | YOSHIDA A, SASAO M, YASUNO N, et al.. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition[J]. Proc. Natl. Acad. Sci. USA, 2013, 110(2): 767-772. |
47 | HUANG Y, BAI X, LUO M, et al.. Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice[J]. J. Integr. Plant Biol., 2019, 61(9): 987-999. |
48 | COOK C E, WHICHARD L P, WALL M, et al.. Germination stimulants. II. structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea)[J]. J. Am. Chem. Soc., 1972, 94(17): 6198-6199. |
49 | HUMPHREY A J, BEALE M H. Strigol: biogenesis and physiological activity[J]. Phytochemistry, 2006, 67(7): 636-640. |
50 | UMEHARA M, HANADA A, YOSHIDA S, et al.. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210): 195-200. |
51 | ISHIKAWA S, MAEKAWA M, ARITE T, et al.. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant Cell Physiol., 2005, 46(1): 79-86. |
52 | ARITE T, IWATA H, OHSHIMA K, et al.. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice[J]. Plant J. Cell Mol. Biol., 2007, 51(6): 1019-1029. |
53 | ARITE T, UMEHARA M, ISHIKAWA S, et al.. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers[J]. Plant Cell Physiol., 2009, 50(8): 1416-1424. |
54 | ZOU J, ZHANG S, ZHANG W, et al.. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J]. Plant J., 2006, 48(5): 687-698. |
55 | LIN H, WANG R, QIAN Q, et al.. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth[J]. Plant Cell, 2009, 21(5): 1512-1525. |
56 | ZHOU F, LIN Q, ZHU L, et al.. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013, 504: 406-410. |
57 | JIANG L, LIU X, XIONG G, et al.. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013, 504(7480): 401-405. |
58 | 高秀华,傅向东.赤霉素信号转导及其调控植物生长发育的研究进展[J].生物技术通报,2018,34(7):1-13. |
GAO X H, FU X D. Research progress for the gibberellin signaling and action on plant growth and development[J]. Biotechnol. Bull., 2018, 34(7): 1-13. | |
59 | SILVERSTONE A L, SUN T. Gibberellins and the green revolution[J]. Trends Plant Sci., 2000, 5(1): 1-2. |
60 | SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, et al.. Green revolution: a mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416(6882): 701-702. |
61 | SAKAMOTO T, MIURA K, ITOH H, et al.. An overview of gibberellin metabolism enzyme genes and their related mutants in rice[J]. Plant Physiol., 2004, 134(4): 1642-1653. |
62 | MAGOME H, NOMURA T, HANADA A, et al.. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice[J]. Proc. Natl. Acad. Sci. USA, 2013, 110(5): 1947-1952. |
63 | CHO S H, KANG K, LEE S H, et al.. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa)[J]. J. Exp. Bot., 2016, 67(6): 1677-1687. |
64 | GROVE M D, SPENCER G F, ROHWEDDER W K, et al.. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen[J]. Nature, 1979, 281(5728): 216-217. |
65 | KIM E J, RUSSINOVA E. Brassinosteroid signalling[J]. Curr. Biol., 2020, 30(7): 294-298. |
66 | HONG Z, UEGUCHI-TANAKA M, UMEMURA K, et al.. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450[J]. Plant Cell, 2003, 15(12): 2900-2910. |
67 | HONG Z, UEGUCHI-TANAKA M, FUJIOKA S, et al.. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone[J]. Plant Cell, 2005, 17(8): 2243-2254. |
68 | TANABE S, ASHIKARI M, FUJIOKA S, et al.. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length[J]. Plant Cell, 2005, 17(3): 776-790. |
69 | YAMAMURO C, IHARA Y, WU X, et al.. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. Plant Cell, 2000, 12(9): 1591-1606. |
70 | TONG H, XIAO Y, LIU D, et al.. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice[J]. Plant Cell, 2014, 26(11): 4376-4393. |
71 | CAO H, CHEN S. Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene[J]. Plant Growth Regul., 1995, 16(2): 189-196. |
72 | SAKAMOTO T, MORINAKA Y, OHNISHI T, et al.. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J]. Nat. Biotechnol., 2006, 24(1): 105-109. |
73 | LI D, WANG L, WANG M, et al.. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield[J]. Plant Biotechnol. J., 2009, 7(8): 791-806. |
74 | ZHAO H, FU Y, ZHANG G, et al.. GS6.1 controls kernel size and plant architecture in rice[J/OL]. Planta, 2023, 258(2): 42[2024-04-19]. . |
75 | YOU J, XIAO W, ZHOU Y, et al.. The apc/ctad1-wide leaf 1-narrow leaf 1 pathway controls leaf width in rice[J]. Plant Cell, 2022, 34(11): 4313-4328. |
76 | NING J, ZHANG B, WANG N, et al.. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the Lamina joint of rice[J]. Plant Cell, 2011, 23(12): 4334-4347. |
77 | LI W, YAN J, ZHANG Y, et al.. Serine protease NAL1 exerts pleiotropic functions through degradation of TOPLESS-related corepressor in rice[J]. Nat. Plants, 2023, 9(7): 1130-1142. |
78 | LUO L, XIE Y, YU S, et al.. The DnaJ domain-containing heat-shock protein NAL11 determines plant architecture by mediating gibberellin homeostasis in rice (Oryza sativa)[J]. New Phytol., 2023, 237(6): 2163-2179. |
79 | HU X, QIAN Q, XU T, et al.. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice[J/OL]. PLoS Genet., 2013, 9(3): e1003391[2024-04-19]. . |
80 | QU R, ZHANG P, LIU Q, et al.. Genome-edited atp binding cassette b1 transporter sd8 knockouts show optimized rice architecture without yield penalty[J/OL]. Plant Commun., 2022, 3(5): 100347[2024-04-19]. . |
81 | SONG X, MENG X, GUO H, et al.. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size[J]. Nat. Biotechnol., 2022, 40(9): 1403-1411. |
82 | ZHENG X, ZHANG S, LIANG Y, et al.. Loss-function mutants of OsCKX gene family based on CRISPR-Cas systems revealed their diversified roles in rice[J/OL]. Plant Genome, 2023, 16(2): e20283[2024-04-19]. . |
83 | XU R, YANG Y, QIN R, et al.. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice[J]. J. Genet. Genomics, 2016, 43(8): 529-532. |
84 | ZENG Y, WEN J, ZHAO W, et al.. Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN 5b, GS3, and OsMYB30 with the CRISPR-Cas9 system[J/OL]. Front. Plant Sci., 2019, 10: 1663[2024-04-19]. . |
85 | GAO Q, LI G, SUN H, et al.. Targeted mutagenesis of the rice FW 2.2-like gene family using the CRISPR/Cas9 system reveals OsFWL4 as a regulator of tiller number and plant yield in rice[J/OL]. Int. J. Mol. Sci., 2020, 21(3): 809[2024-04-19]. . |
86 | BEGEMANN M B, GRAY B N, JANUARY E, et al.. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases[J/OL]. Sci. Rep., 2017, 7(1): 11606[2024-04-19]. . |
87 | HAN Y, TENG K, NAWAZ G, et al.. Generation of semi-dwarf rice (Oryza sativa L.) lines by CRISPR/Cas9-directed mutagenesis of OsGA20ox2 and proteomic analysis of unveiled changes caused by mutations[J/OL]. 3 Biotech, 2019, 9(11): 387[2024-04-19]. . |
88 | 王锦艳,钏兴宽,康洪灿,等.水稻理想株型育种的理论和方法初论[J].时代农机,2018,45(2):160. |
WANG J Y, CHUAN X K, KANG H C, et al.. Preliminary discussion on the theory and method of rice ideal plant type breeding[J]. Times Agric. Mach., 2018, 45(2): 160. | |
89 | 兰金松,庄慧.水稻株型的分子机理研究进展[J].中国水稻科学,2023,37(5):449-458. |
LAN J S, ZHUANG H. Advances in the molecular mechanism of rice plant type[J]. Chin. J. Rice Sci., 2023, 37(5): 449-458. | |
90 | 黄卫衡,吕启明,辛业芸.水稻分蘖角度的研究进展[J].杂交水稻,2019,34(3):1-7. |
HUANG W H, LÜ Q M, XIN Y Y. Research progress on rice tiller angle[J]. Hybrid Rice, 2019, 34(3): 1-7. |
[1] | 张笑天, 王智, 朱鹏宇, 魏霜, 付伟, 黄春蒙, 李志红, 王慧煜, 焦悦. 一种基于定量PCR的CRISPR/Cas9基因编辑作物快速检测方法的研究[J]. 生物技术进展, 2023, 13(6): 907-912. |
[2] | 黄诗颖,谭景艾,王鹏,蒋宁飞,贺浩华,,边建民,. 以回交重组自交系定位水稻萌芽期耐镉胁迫相关QTLs[J]. 生物技术进展, 2021, 11(2): 176-181. |
[3] | 解美霞,,王燕,赵新,高越,刘双,陈锐,兰青阔,徐晓辉4,曹际娟5,王永. 基于焦磷酸测序技术建立基因编辑水稻检测方法[J]. 生物技术进展, 2020, 10(6): 668-673. |
[4] | 张文倩,王亚梁,朱德峰,陈惠哲,向镜,张义凯,武辉,胡国辉,易子豪,张玉屏. 常规籼稻黄华占籽粒淀粉和蔗糖代谢相关酶活性对夜温升高的响应[J]. 生物技术进展, 2019, 9(3): 283-289. |
[5] | 陈新兵,黄荣峰,王娟. 水稻矮杆突变体D814基因图位克隆与功能分析[J]. 生物技术进展, 2017, 7(6): 608-617. |
[6] | 张小芳,艾瑛,魏兰芳,史恭林,王星,李凡,姬广海. 生防细菌对水稻的促生性及诱导抗性研究[J]. 生物技术进展, 2017, 7(1): 43-51. |
[7] | 金学博,柳青,尹悦佳,金永梅,王云鹏,于莹,韩四平. 一种新型几丁质酶基因LcChi2在转基因水稻中的功能分析[J]. 生物技术进展, 2016, 6(2): 77-84. |
[8] | 杜瑞英,文典,赵迪,赵沛华,彭立钧,李蕾,陈岩,王富华. Cd、Pb和As在不同品种水稻籽粒中的富集特征研究[J]. 生物技术进展, 2016, 6(2): 85-90. |
[9] | 岳琳,李楠,王阳,刘洋,柳青,金永梅,尹悦佳. 分子改造cryNAc基因的转基因水稻创制及其功能评价[J]. 生物技术进展, 2015, 5(6): 429-435. |
[10] | 马廷臣,夏加发,王元垒,周坤能,李泽福. 抽穗扬花期高温胁迫对水稻主要品质指标的影响[J]. 生物技术进展, 2015, 5(5): 351-358. |
[11] | 朱琳,刘瑞香. 红砂不同株型在干旱盐碱胁迫下脯氨酸、丙二醛及抗氧化酶含量的研究[J]. 生物技术进展, 2015, 5(4): 315-320. |
[12] | 祝步拓,张芊,路铁刚. 水稻中一个油菜素内酯不敏感突变体的图位克隆[J]. 生物技术进展, 2014, 4(4): 268-273. |
[13] | 牛丽芳,路铁刚,林浩. 水稻高光效育种研究进展[J]. 生物技术进展, 2014, 4(3): 153-157. |
[14] | 曹建,孙学辉,路铁刚. 一份水稻矮杆小粒突变体的形态特征和基因定位[J]. 生物技术进展, 2014, 4(3): 186-191. |
[15] | 赵启辉,马廷臣,夏加发,王元垒,赵宝,王青,朱昌兰,李泽福. 高温胁迫对水稻花器官及稻米品质影响的研究进展[J]. 生物技术进展, 2013, 3(3): 162-165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部