1 |
ALI M, HUSAIN Q, SULTANA S, et al.. Immobilization of peroxidase on polypyrrole-cellulose-graphene oxide nanocomposite via non-covalent interactions for the degradation of Reactive Blue 4 dye[J]. Chemosphere, 2018, 202: 198-207.
|
2 |
RODRÍGUEZ-RESTREPO Y A, ORREGO C E. Immobilization of enzymes and cells on lignocellulosic materials[J]. Environ. Chem. Lett., 2020, 18(3): 787-806.
|
3 |
ZDARTA J, MEYER A, JESIONOWSKI T, et al.. A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility[J/OL]. Catalysts, 2018, 8(2): 92[2023-07-24]. .
|
4 |
WONG L S, KHAN F, MICKLEFIELD J. Selective covalent protein immobilization: strategies and applications[J]. Chem. Rev., 2009, 109(9): 4025-4053.
|
5 |
PETER M G. Applications and environmental aspects of chitin and chitosan[J]. J. Macromol. Sci. Part A, 1995, 32(4): 629-640.
|
6 |
JEGANNATHAN K R, ABANG S, PONCELET D, et al.. Production of biodiesel using immobilized lipase: a critical review[J]. Crit. Rev. Biotechnol., 2008, 28(4): 253-264.
|
7 |
KLOTZBACH T L, WATT M, ANSARI Y, et al.. Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion® polymers[J]. J. Membr. Sci., 2008, 311(1-2): 81-88.
|
8 |
HONDA T, MIYAZAKI M, NAKAMURA H, et al.. Immobilization of enzymes on a microchannel surface through cross-linking polymerization[J]. Chem. Commun., 2005(40): 5062-5064.
|
9 |
KURTOVIC I, NALDER T D, CLEAVER H, et al.. Immobilisation of Candida rugosa lipase on a highly hydrophobic support: a stable immobilised lipase suitable for non-aqueous synthesis[J/OL]. Biotechnol. Rep. Amsterdam. Neth., 2020, 28: e00535[2023-07-24]. .
|
10 |
HU C, WANG N, ZHANG W, et al.. Immobilization of Aspergillus terreus lipase in self-assembled hollow nanospheres for enantioselective hydrolysis of ketoprofen vinyl ester[J]. J. Biotechnol., 2015, 194: 12-18.
|
11 |
JOYCE P, ULMEFORS H, GARCIA-BENNETT A, et al.. Microporosity, pore size, and diffusional path length modulate lipolysis kinetics of triglycerides adsorbed onto SBA-15 mesoporous silica particles[J]. Langmuir. ACS J. Surf. Colloids, 2020, 36(13): 3367-3376.
|
12 |
HONG G, DIAO S, ANTARIS A L, et al.. Carbon nanomaterials for biological imaging and nanomedicinal therapy[J]. Chem. Rev., 2015, 115(19): 10816-10906.
|
13 |
LIU Z, MCCLEMENTS D J, SHI A, et al.. Janus particles: a review of their applications in food and medicine[J]. Crit. Rev. Food Sci. Nutr., 2022, 4(27): 1-12.
|
14 |
LIU Z, SHI A, WU C, et al.. Natural amphiphilic shellac nanoparticle-stabilized novel Pickering emulsions with droplets and Bi-continuous structures[J]. ACS Appl. Mater. Interfaces, 2022, 14(51): 57350-57361.
|
15 |
HUANG X M, LUO Z J, GUO J, et al.. Enzyme-adsorbed chitosan nanogel particles as edible Pickering interfacial biocatalysts and lipase-responsive phase inversion of emulsions[J]. J. Agric. Food Chem., 2020, 68(33): 8890-8899.
|
16 |
JIAO B, SHI A, WANG Q, et al.. High-internal-phase Pickering emulsions stabilized solely by peanut-protein-isolate microgel particles with multiple potential applications[J]. Angew. Chem. Int. Ed., 2018, 57(30): 9274-9278.
|
17 |
LI S, JIAO B, FAISAL S, et al.. 50/50 oil/water emulsion stabilized by pea protein isolate microgel particles/xanthan gum complexes and co-emulsifiers[J/OL]. Food Hydrocoll., 2023, 134: 108078[2023-07-24]. .
|
18 |
GUAN T, LIU B, WANG R, et al.. The enhanced fatty acids flavor release for low-fat cheeses by carrier immobilized lipases on O/W Pickering emulsions[J/OL]. Food Hydrocoll., 2021, 116: 106651[2023-07-24]. .
|
19 |
FENG X L, LIU H Z, SHI A M, et al.. Effects of transglutaminase catalyzed crosslinking on physicochemical characteristics of arachin and conarachin-rich peanut protein fractions[J]. Food Res. Int., 2014, 62: 84-90.
|
20 |
WANG Z, JU X, HE R, et al.. The effect of rapeseed protein structural modification on microstructural properties of peptide microcapsules[J]. Food Bioprocess Technol., 2015, 8(6): 1305-1318.
|
21 |
LIU F, TANG C H. Reprint of "Soy glycinin as food-grade Pickering stabilizers: part. Ⅲ. fabrication of gel-like emulsions and their potential as sustained-release delivery systems for β-carotene"[J]. Food Hydrocoll., 2016, 60: 631-640.
|
22 |
葛艳争,石爱民,任广跃,等. 超声预处理对花生分离蛋白微凝胶颗粒结构及其Pickering乳液特性的影响[J].食品科学, 2022, 43(20): 95-101.
|
23 |
MIGNEAULT I, DARTIGUENAVE C, BERTRAND M J, et al.. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking[J]. BioTechniques, 2004, 37(5): 790-796, 798-802.
|
24 |
SKJOLD-JØRGENSEN J, VIND J, MOROZ O V, et al.. Controlled lid-opening in Thermomyces lanuginosus lipase-an engineered switch for studying lipase function[J]. Biochim. Biophys. Acta Proteins Proteom., 2017, 1865(1): 20-27.
|
25 |
ZAAK H, HSIAR E, KORNECKI J F, et al.. Effect of immobilization rate and enzyme crowding on enzyme stability under different conditions. The case of lipase from Thermomyces lanuginosus immobilized on octyl agarose beads[J]. Proc. Biochem., 2017, 56: 117-123.
|
26 |
陈强.多孔陶瓷吸附—戊二醛交联固定化乳糖酶的研究[D].武汉:武汉工业学院, 2009.
|
27 |
王琳.几种脂肪酶的固定化及其应用研究[D].福州:福州大学, 2018.
|
28 |
LIU F, TANG C H. Soy glycinin as food-grade Pickering stabilizers: part. I. structural characteristics, emulsifying properties and adsorption/arrangement at interface[J]. Food Hydrocoll., 2016, 60: 606-619.
|
29 |
RAMOS Ó L, REINAS I, SILVA S I, et al.. Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom[J]. Food Hydrocoll., 2013, 30(1): 110-122.
|
30 |
ATEF M, REZAEI M, BEHROOZ R. Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose[J]. Int. J. Biol. Macromol., 2014, 70: 537-544.
|