生物技术进展 ›› 2022, Vol. 12 ›› Issue (6): 853-860.DOI: 10.19586/j.2095-2341.2021.0161
李岩异(), 吕娜, 陈金利, 李晓, 张卫婷, 张红霞(
)
收稿日期:
2021-09-26
接受日期:
2022-06-22
出版日期:
2022-11-25
发布日期:
2022-11-30
通讯作者:
张红霞
作者简介:
李岩异 E-mail:1416305041@qq.com;
Yanyi LI(), Na LYU, Jinli CHEN, Xiao LI, Weiting ZHANG, Hongxia ZHANG(
)
Received:
2021-09-26
Accepted:
2022-06-22
Online:
2022-11-25
Published:
2022-11-30
Contact:
Hongxia ZHANG
摘要:
大豆蛋白源性肽是大豆蛋白质经酸法或酶法水解后分离精制而得到的多肽混合物,是植物蛋白源性肽的重要来源,大豆蛋白源性肽通过抑制肠道胆固醇吸收、与胆固醇的相互作用、调节胆固醇代谢相关基因(用于降低胆固醇)、甘油三酯代谢相关基因、二肽基肽酶Ⅳ和葡萄糖代谢相关基因,在降低胆固醇、降低甘油三酯、抗肥胖、抑制脂肪酸合成酶和抗糖尿病等代谢调节方面具有重要作用。综述了大豆蛋白源性肽在体内外改善脂质和糖代谢方面的生理功能,并对大豆蛋白源性肽的前景进行了展望,以期为大豆蛋白源性肽的研究与应用提供参考。
中图分类号:
李岩异, 吕娜, 陈金利, 李晓, 张卫婷, 张红霞. 大豆蛋白源性肽调节糖脂代谢机制研究进展[J]. 生物技术进展, 2022, 12(6): 853-860.
Yanyi LI, Na LYU, Jinli CHEN, Xiao LI, Weiting ZHANG, Hongxia ZHANG. Progress on the Mechanism of Soybean Protein Derived Peptides Regulating Glucose and Lipid Metabolism[J]. Current Biotechnology, 2022, 12(6): 853-860.
肽源 | 肽序列 | 生物学活性 |
---|---|---|
豇豆 | GCTLN,QDF | 低胆固醇血症 |
海泽尔纳特 | RLLPH | 抗肥胖 |
羽扇豆 | LTFPGSAED | 抗糖尿病 |
菜豆 | INEGSLLLPH FVVAEQAGNEGFE | 抗糖尿病 |
大豆 | IAVPGEVA,LPYP | 低胆固醇血症 |
IAVPTGVA | 低胆固醇血症,抗糖尿病 | |
AKSPLF,ATNPLF,FEELN,LSVSVL | 抗糖尿病 | |
KA,VK,SY | 低甘油三酯血症 | |
KNPQLR,EITPEKNPQLR,RKQEEDEEQQRE | 低甘油三酯血症 | |
螺旋藻 | NALKCHSCHCPA LNNPSVCDCMMKAAR, NPVWKRK,CANPHELPNK | 低甘油三酯血症 |
RSELAAWSR | 抗糖尿病 | |
核桃 | LPLLR | 抗糖尿病 |
表1 体外活性代谢调节的植物肽
Table1 Plant peptides regulating active metabolism in vitro
肽源 | 肽序列 | 生物学活性 |
---|---|---|
豇豆 | GCTLN,QDF | 低胆固醇血症 |
海泽尔纳特 | RLLPH | 抗肥胖 |
羽扇豆 | LTFPGSAED | 抗糖尿病 |
菜豆 | INEGSLLLPH FVVAEQAGNEGFE | 抗糖尿病 |
大豆 | IAVPGEVA,LPYP | 低胆固醇血症 |
IAVPTGVA | 低胆固醇血症,抗糖尿病 | |
AKSPLF,ATNPLF,FEELN,LSVSVL | 抗糖尿病 | |
KA,VK,SY | 低甘油三酯血症 | |
KNPQLR,EITPEKNPQLR,RKQEEDEEQQRE | 低甘油三酯血症 | |
螺旋藻 | NALKCHSCHCPA LNNPSVCDCMMKAAR, NPVWKRK,CANPHELPNK | 低甘油三酯血症 |
RSELAAWSR | 抗糖尿病 | |
核桃 | LPLLR | 抗糖尿病 |
肽源 | 肽序列 | 生物学活性 |
---|---|---|
大豆 | VAWWMY(大豆抑素) | 低胆固醇血症 |
大豆 | VHVV | 低胆固醇低甘油三酯血症 |
大豆 | LUNASIN | 低胆固醇血症 |
大豆 | YPFVV(大豆蛋白⁃5) | 低甘油三酯抗糖尿病 |
大豆 | 苷元 | 抗糖尿病 |
水稻 | GEQQPGM | 低胆固醇血症 |
鹰嘴豆 | VFVRN | 降血脂 |
表2 体内活性代谢调节的植物肽
Table2 Plant peptides regulating active metabolism in vivo
肽源 | 肽序列 | 生物学活性 |
---|---|---|
大豆 | VAWWMY(大豆抑素) | 低胆固醇血症 |
大豆 | VHVV | 低胆固醇低甘油三酯血症 |
大豆 | LUNASIN | 低胆固醇血症 |
大豆 | YPFVV(大豆蛋白⁃5) | 低甘油三酯抗糖尿病 |
大豆 | 苷元 | 抗糖尿病 |
水稻 | GEQQPGM | 低胆固醇血症 |
鹰嘴豆 | VFVRN | 降血脂 |
1 | 蔺欢, 王俊娟, 孙振婷,等. 植物小分子肽的研究进展[J]. 西北植物学报, 2021,41(1): 168-180. |
2 | CABANOS C, KATO N, AMARI Y, et al.. Development of a novel transgenic rice with hypocholesterolemic activity via high-level accumulation of the α′ subunit of soybean β-conglycinin[J]. Transg. Res., 2014, 23(4): 609-620. |
3 | 刘传富,董海洲,刘晓婷,等. 大豆多肽及其在食品工业中应用[J].粮食与油脂, 2002(10): 31-32. |
4 | LI L, YANG Z Y, YANG X Q, et al.. Debittering effect of Actinomucor elegans peptidases on soybean protein hydrolysates[J]. Ind. Microbiol. Biotechnol., 2008, 35: 41-47. |
5 | 敬庭森, 周明瑞,李哲,等.大豆小肽蛋白替代鱼粉对黄颡鱼幼鱼生长性能、消化酶活性和抗氧化功能的影响[J]. 渔业科学进展, 2021, 42(5): 149-157. |
6 | 张佳汇,王芳,闫丹丹.鲜味肽介绍及其在调味料中应用的探讨[J].食品工业,2021, 42(5): 204-207. |
7 | BORGSTR M B. Partition of lipids between emulsified oil and micellar phases of glyceride-bile salt dispersions[J/OL]. J. Lipid Res., 1967, 8(6):598[2022-06-22]. . |
8 | NAGAOKA S, NAKAMURA A, SHIBATA H, et al.. Soystatin (VAWWMY), a novel bile acid-binding peptide, decreased micellar solubility and inhibited cholesterol absorption in rats[J]. Biosci. Biotechnol. Biochem., 2010, 74(8): 1738-1741. |
9 | BROWN M S, GOLDSTEIN J L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound[J]. Cell, 1997, 89(3):331-340. |
10 | DAVIS R A, MIYAKE J H, HUI T Y, et al.. Regulation of cholesterol-7α-hydroxylase:barely missing a SHP(Review)[J]. J. Lipid Res., 2002, 43 (4):533-543. |
11 | NAGAOKA S, FUTAMURA Y, MIWA K, et al.. Identification of novel hypocholesterolemic peptides derived from bovine ailk β-lactoglobulin[J]. Biochem. Biophys. Res. Commun., 2001, 281(1): 11-17. |
12 | GU L, WANG Y, XU Y, et al.. Lunasin functionally enhances LDL uptake via inhibiting PCSK9 and enhancing LDLR expression in vitro and in vivo[J]. Oncotarget, 2017, 8(46): 80826-80840. |
13 | MARTINEZ-VILLALUENGA C, DIA V P, BERHOW M, et al.. Protein hydrolysates from β-conglycinin enriched soybean genotypes inhibit lipid accumulation and inflammation in vitro[J]. Mol. Nutr. Food Res., 2009, 53(8): 1007-1018. |
14 | GU L, GONG Y, ZHAO C, et al.. Lunasin improves the LDL-C lowering efficacy of simvastatin via inhibiting PCSK9 expression in hepatocytes and apoE-/- mice[J/OL]. Molecules, 2019, 24(22):4140[2022-06-22]. . |
15 | LAMMI C, ZANONI C, IAVPGEVAARNOLDI A. IAVPTGVA, and LPYP, three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway[J]. J. Funct. Foods, 2015,14: 469-478. |
16 | TAKEUCHI A, HISAMATSU K, OKUMURA N, et al.. IIAEK targets intestinal alkaline phosphatase (IAP) to improve cholesterol metabolism with a specific activation of IAP and downregulation of ABCA1[J/OL]. Nutrients, 2020, 12(9): 2859 [2022-06-22]. . |
17 | TACHIBANA N, IWAOKA Y, HIROTSUKA M, et al.. β-conglycinin lowers very-low-density lipoprotein-triglyceride levels by increasing adiponectin and insulin sensitivity in rats[J]. Biosci. Biotechnol. Biochem., 2010, 74(6): 1250-1255. |
18 | SHENG X, NAGAOKA S, HASHIMOTO M, et al.. Identification of peptides in blood following oral administration of β-conglycinin to wistarrats[J/OL]. Food Chem., 2021, 341: 128197[2022-06-22]. . |
19 | NAGAOKA S, AWANO T, NAGATA N, et al.. Serum cholesterol reduction and cholesterol absorption inhibition in CaCo-2 cells by a soyprotein peptic hydrolyzate[J]. Biosci. Biotechnol. Biochem., 1997, 61(2): 354-356. |
20 | NAGAOKA S, MIWA K, ETO M, et al.. Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and caco-2 cells[J]. J. Nutr., 1999, 129(9): 1725-1730. |
21 | HORI G, WANG M F, CHAN Y C, et al.. Soy protein hydrolyzate with bound phospholipids reduces serum cholesterol levels in hypercholesterolemic adult male volunteers[J]. Biosci. Biotechnol. Biochem., 2001, 65(1): 72-78. |
22 | 李依娜,余元善,肖更生,等.植物源活性肽的研究开发概况[J].中国果菜, 2020, 40(11): 48-54. |
23 | MORIKAWA K, KONDO I, KANAMARU Y, et al.. A novel regulatory pathway for cholesterol degradation via lactostatin[J]. Biochem. Biophys. Res. Commun., 2007, 352(3): 697-702. |
24 | GOLDBERG A I. Fat in the blood, fat in the artery, fat in the heart: triglyceride in physiology and disease[J]. Arteri. Thromb. Vasc. Biol., 2018, 38(4): 700-706. |
25 | HUAMING S, BEN N, HONGBIN S. Metabolic targeting of cancers: from molecular mechanisms to therapeutic strategies[J]. Curr. Med. Chem., 2009, 16(13): 1561-1587. |
26 | RONNETT G V, KIM E-K, LANDREE L E, et al.. Fatty acid metabolism as a target for obesity treatment[J]. Physiol. Behav., 2005, 85(1): 25-35. |
27 | LOFTUS T M, JAWORSKY D E, FREHYWOT G L, et al.. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors[J]. Science, 2000, 288(5475): 2379-2381. |
28 | CHAKRAVARTHY M V, ZHU Y, YIN L, et al.. Inactivation of hypothalamic FAS protects mice from diet-induced obesity and inflammation[J]. J. Lipid Res., 2009, 50(4): 630-640. |
29 | IRITANI N, HOSOMI H, FUKUDA H, et al.. Soybean protein suppresses hepatic lipogenic enzyme gene expression in wistar fatty rats[J]. J. Nutr., 1996, 126(2): 380-388. |
30 | MARTINEZ-VILLALUENGA C, RUPASINGHE S G, SCHULER M A, et al.. Peptides from purified soybean β-conglycinininhibit fatty acid synthase by interaction with the thioesterase catalytic domain[J]. FEBS J., 2010, 277(6): 1481-1493. |
31 | TAMARU S, KURAYAMA T, SAKONO M, et al.. Effects of dietary soybean peptides on hepatic production of ketone bodies and secretion of triglyceride by perfused rat liver[J]. Biosci. Biotechnol. Biochem., 2007, 71(10): 2451-2457. |
32 | GOTO T, MORI A, NAGAOKA S. Soluble soy protein peptic hydrolysate stimulates adipocyte differentiation in 3T3-L1 cells[J]. Mol. Nutr. Food Res., 2013, 57(8): 1435-1445. |
33 | 姜德田,汪毅,黄旭雄,等.低鱼粉饲料中添加酶解豆粕对凡纳滨对虾生长性能和抗胁迫机能的影响[J].水产学报, 2020, 44(6): 999-1012. |
34 | 姜珊,张康华,马青琳,等.酶解法制备植物抗氧化肽及其应用[J].粮食与饲料工业, 2019, 6: 16-20. |
35 | 马井喜,闵伟红.大豆蛋白酶法水解产物抗氧化活性的研究[J].中国酿造, 2012, 31(10): 7. |
36 | STALJANSSENS D, VAN CAMP J, BILLIET A, et al.. Screening of soy and milk protein hydrolysates for their ability to activate the CCK1 receptor[J]. Peptides, 2012, 34(1): 226-231. |
37 | PATIL S P, GOSWAMI A, KALIA K, et al.. Plant-derived bioactive peptides: a treatment to cure diabetes[J]. Int. J. Peptide Res. Therap., 2020, 26(2): 955-968. |
38 | MOJICA L, GONZALEZ DE M E, GRANADOS-SILVESTRE M Á, et al.. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches[J]. J. Funct. Foods, 2017, (31): 274-286. |
39 | KASHIMA H, UEMOTO S, EGUCHI K,et al.. Effect of soy protein isolate preload on postprandial glycemic control in healthy humans[J]. Nutrition, 2016, 32(9): 965-969. |
40 | ZENG Z, DUAN Z, ZHANG T,et al.. Association of FCRL4 polymorphisms on disease susceptibility and severity of ankylosing spondylitis in Chinese Han population[J]. Clin. Rheumatol., 2012, 31(10): 1449-1454. |
41 | TACHIBANA N, YAMASHITA Y, NAGATA M, et al.. Soy β-conglycinin improves glucose uptake in skeletal muscle and ameliorates hepatic insulin resistance in Goto-Kakizakirats[J]. Nutr. Res., 2014, 34(2): 160-167. |
42 | 姜德田,汪毅,黄旭雄,等.低鱼粉饲料中添加酶解豆粕对凡纳滨对虾生长性能和抗胁迫机能的影响[J].水产学报, 2020, 44(6): 999-1012. |
43 | YAMADA Y, MURAKI A, OIE M, et al.. Soymorphin-5, a soy-derived μ-opioid peptide, decreases glucose and triglyceride levels through activating adiponectin and PPARα systems in diabetic KKAymice[J]. Am. J. Physiol. Endocrinol. Metab., 2012, 302(4): 433-440. |
44 | 孙晓云.植物蛋白肽粉对肝硬化型低蛋白血症的疗效研究[J].河北医药, 2017, 39(19): 2974-2976. |
45 | LAMMI C, BOLLATI C, FERRUZZA S, et al.. Soybean-and lupin-derived peptides inhibit DPP-IV activity on in situ human intestinal Caco-2 cells and ex vivo human serum[J/OL]. Nutrients, 2018, 10(8): 1082[2022-06-22]. . |
46 | ARQUES M R, FONTANARI G G, PIMENTA D C, et al.. Proteolytic hydrolysis of cowpea proteins is able to release peptides with hypocholesterolemicactivity[J]. Food Res. Int., 2015, 77: 43-48. |
47 | MOKADY S, LIENER I E. Effect of plant proteins on cholesterol metabolism in growing rats fed atherogenic diets[J]. Ann. Nutr. Metab., 1982, 26(2): 138-144. |
48 | INOUE N, NAGAO K, SAKATA K, et al.. Screening of soy protein-derived hypotriglyceridemic di-peptides in vitro and in vivo[J/OL]. Lipids Health Dis., 2011, 10(1): 85[2022-06-22]. . |
49 | FAN X, CUI Y, ZHANG R, et al.. Purification and identification of anti-obesity peptides derived from Spirulinaplatensis[J]. J. Funct. Foods, 2018, 47: 350-360. |
50 | WANG J, ZHOU M, WU T, et al.. Novel anti-obesity peptide (RLLPH) derived from hazelnut (Corylus heterophylla Fisch) protein hydrolysates inhibits adipogenesis in 3T3-L1 adipocytes by regulating adipogenic transcription factors and adenosine monophosphate-activated protein kinase (AMPK) activation[J]. J. Biosci. Bioengin., 2020, 129(3): 259-268. |
51 | ZHANG X, SHI W, HE H, et al..Hypolipidemic effects and mechanisms of Val-Phe-Val-Arg-Asn in C57BL/6J mice and 3T3-L1 cell models[J]. J. Funct. Foods, 2020, 73: 100-104. |
52 | JANG E H, MOON J S, KO J H, et al.. Novel black soy peptides with antiobesity effects: activation of leptin-like signaling and AMP-activated protein kinase[J]. Int. J. Obes., 2008, 32(7): 1161-1170. |
53 | 徐茜,杨正,朱文娟,等.发酵豆粕替代鱼粉对鲫鱼生长、血清生化指标及肠道结构的影响[J].饲料工业, 2021, 42(10): 31-37. |
54 | NGOH Y Y, GAN C Y. Identification of pinto bean peptides with inhibitory effects on α-amylase and angiotensin converting enzyme (ACE) activities using an integrated bioinformatics-assisted approach[J]. Food Chem., 2018, 267: 124-131. |
55 | H-LSIOW, GAN C-Y. Extraction, identification, and structure-activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds (Cuminum cyminum)[J]. J. Funct. Foods, 2016, 22: 1-12. |
56 | SIOW H L, LIM T S, GAN C Y. Development of a workflow for screening and identification of α-amylase inhibitory peptides from food source using an integrated bioinformatics-phage display approach: case study cumin seed[J]. Food Chem., 2017, 214: 67-76. |
57 | WANG J, WU T, FANG L, et al.. Anti-diabetic effect by walnut (Juglans mandshurica Maxim.)-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells[J/OL]. J. Funct. Foods, 2020, 69: 103944[2022-06-22]. . |
58 | JAKUBCZYK A, KARAŚ M, ZŁOTEK U, et al.. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds[J]. Food Res. Int., 2017, 100: 489-496. |
59 | 林贺,金平,杨培国,等.蒲公英酶解抗菌肽的分析[J].分子植物育种, 2020, 18(10): 3388-3394. |
60 | HU S, FAN X, QI P,et al.. Identification of anti-diabetes peptides from Spirulinaplatensis [J]. J. Funct. Foods, 2019, 56: 333-341. |
61 | 杨贤庆,刘晶,胡晓,等.海藻抗肿瘤活性肽的研究进展[J].食品与发酵工业, 2020, 46(21): 262-271. |
62 | NAGAOKA S. Structure-function properties of hypolipidemicpeptides[J/OL]. J. Food Biochem., 2019, 43(1): 12539[2022-06-22]. . |
63 | NAGAOKA S. Mystery of cholesterol-lowering peptides, lactostatin and soystatin[J]. J. Agric. Food Chem., 2018, 66(16): 3993-3994. |
64 | BANNO A, WANG J, OKADA K, et al.. Identification of a novel cholesterol-lowering dipeptide, phenylalanine-proline (FP), and its down-regulation of intestinal ABCA1 in hypercholesterolemic rats and Caco-2 cells[J/OL]. Sci. Rep., 2019, 9(1): 19416[2022-06-22]. . |
65 | DRANSE H J, WAISE T M Z, HAMR S C, et al.. Physiological and therapeutic regulation of glucose homeostasis by upper small intestinal PepT1-mediated protein sensing[J]. Nature Commun., 2018, 9(1): 1118. |
66 | 孙玉明,李培玉,宋志东.酶解植物蛋白在水产动物营养上的应用[J].饲料与畜牧, 2015 (11): 32-37. |
[1] | 黄乔木, 何艳. 雷帕霉素对糖尿病肾病大鼠足细胞生物学行为及mTOR信号通路的影响[J]. 生物技术进展, 2022, 12(3): 460-466. |
[2] | 廖敏, 杨洛, 王珍, 郝亚荣. 松果菊苷对db/db糖尿病小鼠心肌的保护作用[J]. 生物技术进展, 2022, 12(1): 129-134. |
[3] | 廖敏, 杨洛, 王珍, 郝亚荣. 糖尿病心肌病发病机制的研究进展[J]. 生物技术进展, 2021, 11(6): 700-704. |
[4] | 廖敏,杨洛,王珍,郝亚荣. 抗糖尿病药物治疗阿尔茨海默病的研究进展[J]. 生物技术进展, 2021, 11(3): 311-315. |
[5] | 王珍,杨洛,廖敏,郝亚荣. mTOR信号通路在糖尿病肾病发病机制中的研究进展[J]. 生物技术进展, 2021, 11(3): 316-321. |
[6] | 何晋,寻治铭,谢飞,仪杨,刘梦昱,赵鹏翔. 长期饮用富氢水对正常大鼠生理功能的影响[J]. 生物技术进展, 2021, 11(3): 353-360. |
[7] | 金童,陈铖. 内质网应激及其在糖尿病肾病中的作用机制[J]. 生物技术进展, 2021, 11(1): 40-46. |
[8] | 欧阳满. FGF21类似物治疗动脉粥样硬化机制研究进展[J]. 生物技术进展, 2020, 10(5): 463-469. |
[9] | 张凯艺,谢宁,叶华琼,杨述林. 葡萄糖转运蛋白在血糖稳态调节中的功能[J]. 生物技术进展, 2019, 9(1): 21-27. |
[10] | 陆腾飞,裴文华,邬杨楠,马月辉,关伟军. 血管干/祖细胞的研究进展[J]. 生物技术进展, 2017, 7(3): 182-186. |
[11] | 姜辉,,刘玉琴,. 结核病合并糖尿病的流行现状及其防控[J]. 生物技术进展, 2017, 7(1): 25-29. |
[12] | 李明,赵卉. 胚胎干细胞移植治疗糖尿病的研究进展[J]. 生物技术进展, 2011, 1(3): 201-206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部