生物技术进展 ›› 2024, Vol. 14 ›› Issue (5): 805-812.DOI: 10.19586/j.2095-2341.2024.0033
• 进展评述 • 上一篇
刘帆1,2(), 陈晨2, 朱媛智2,3, 傅艳君2,3, 王琳1, 张霆2, 王珊2(
)
收稿日期:
2024-02-27
接受日期:
2024-04-18
出版日期:
2024-09-25
发布日期:
2024-10-22
通讯作者:
王珊
作者简介:
刘帆 E-mail: liufan5023@163.com;
基金资助:
Fan LIU1,2(), Chen CHEN2, Yuanzhi ZHU2,3, Yanjun FU2,3, Lin WANG1, Ting ZHANG2, Shan WANG2(
)
Received:
2024-02-27
Accepted:
2024-04-18
Online:
2024-09-25
Published:
2024-10-22
Contact:
Shan WANG
摘要:
阻塞性睡眠呼吸暂停(obstructive sleep apnea, OSA)属于慢性、复杂性、异质性呼吸系统疾病,主要特征是在夜间睡眠期间发生的上呼吸道反复塌陷。这种疾病会导致睡眠碎片化和认知行为缺陷等临床表现。OSA的典型病理生理改变是慢性间歇性缺氧(chronic intermittent hypoxia,CIH),CIH会造成不同程度的中枢神经系统病理学损伤和功能障碍。表观遗传学范畴涵盖DNA甲基化、组蛋白翻译后修饰和非编码RNA等,它们能够调控应激反应、细胞缺氧、炎症和代谢异常等过程。这些过程与OSA的发病机制和CIH的潜在驱动力有关。综述了OSA影响认知功能的表观遗传学研究进展,以及诊断及治疗进展,期望为未来深入探索OSA致病机制、找到药物治疗新靶点拓宽思路。
中图分类号:
刘帆, 陈晨, 朱媛智, 傅艳君, 王琳, 张霆, 王珊. 阻塞性睡眠呼吸暂停和认知障碍: 表观遗传学进展综述[J]. 生物技术进展, 2024, 14(5): 805-812.
Fan LIU, Chen CHEN, Yuanzhi ZHU, Yanjun FU, Lin WANG, Ting ZHANG, Shan WANG. Obstructive Sleep Apnea and Cognitive Impairment: A Review of Epigenetic Advances[J]. Current Biotechnology, 2024, 14(5): 805-812.
1 | MALHOTRA A, AYAPPA I, AYAS N, et al.. Metrics of sleep apnea severity: beyond the apnea-hypopnea index[J/OL]. Sleep, 2021, 44(7): zsab030[2024-07-28]. . |
2 | LV R, LIU X, ZHANG Y, et al.. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome[J/OL]. Signal Transduct. Target. Ther., 2023, 8(1): 218[2024-05-28]. . |
3 | MALHOTRA A, MESARWI O, J-LPEPIN, et al.. Endotypes and phenotypes in obstructive sleep apnea[J]. Curr. Opin. Pulm. Med., 2020, 26(6): 609-614. |
4 | VANEK J, PRASKO J, GENZOR S, et al.. Obstructive sleep apnea, depression and cognitive impairment[J]. Sleep Med., 2020, 72: 50-58. |
5 | DE CASTRO J, ROSALES-MAYOR E. Depressive symptoms in patients with obstructive sleep apnea/hypopnea syndrome[J]. Sleep Breath., 2013, 17(2): 615-620. |
6 | ZHANG M, LU Y, SHENG L, et al.. Advances in molecular pathology of obstructive sleep apnea[J/OL]. Molecules, 2022, 27(23): 8422[2024-7-28]. . |
7 | CANESSA N, CASTRONOVO V, CAPPA S F, et al.. Obstructive sleep apnea: brain structural changes and neurocognitive function before and after treatment[J]. Am. J. Respir. Crit. Care Med., 2011, 183(10): 1419-1426. |
8 | LEE M H, YUN C H, MIN A, et al.. Altered structural brain network resulting from white matter injury in obstructive sleep apnea[J/OL]. Sleep, 2019, 42(9): zsz120[2024-7-28]. . |
9 | BODENNER K A, JAMBHEKAR S K, COM G, et al.. Assessment and treatment of obstructive sleep-disordered breathing[J]. Clin. Pediatr. (Phila), 2014, 53(6): 544-548. |
10 | OSMAN A M, CARTER S G, CARBERRY J C, et al.. Obstructive sleep apnea: current perspectives[J]. Nat. Sci. Sleep, 2018, 10: 21-34. |
11 | HALBOWER A C, DEGAONKAR M, BARKER P B, et al.. Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury[J/OL]. PLoS Med., 2006, 3(8): e301[2024-05-28]. . |
12 | BALZANO J, CHIARAVALLOTI N, LENGENFELDER J, et al.. Does the scoring of late responses affect the outcome of the paced auditory serial addition task (PASAT)?[J]. Arch. Clin. Neuropsychol., 2006, 21(8): 819-825. |
13 | BUCKS R S, OLAITHE M, ROSENZWEIG I, et al.. Reviewing the relationship between OSA and cognition: Where do we go from here?[J]. Respirology, 2017, 22(7): 1253-1261. |
14 | GIBNEY E R, NOLAN C M. Epigenetics and gene expression[J]. Heredity (Edinb), 2010, 105(1): 4-13. |
15 | CAVALLI G, HEARD E. Advances in epigenetics link genetics to the environment and disease[J]. Nature, 2019, 571(7766): 489-499. |
16 | XIE J, WANG Y, YE C, et al.. Distinctive patterns of 5-methylcytosine and 5-hydroxymethylcytosine in schizophrenia[J/OL]. Int. J. Mol. Sci., 2024, 25(1): 636[2024-05-28]. . |
17 | HÜLS A, ROBINS C, CONNEELY K N, et al.. Brain DNA methylation patterns in CLDN5 associated with cognitive decline[J]. Biol. Psychiatry, 2022, 91(4): 389-398. |
18 | WANG S D, WANG X, ZHAO Y, et al.. Homocysteine-induced disturbances in DNA methylation contribute to development of stress-associated cognitive decline in rats[J]. Neurosci. Bull., 2022, 38(8): 887-900. |
19 | CHEUNG I, SHULHA H P, JIANG Y, et al.. Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(19): 8824-8829. |
20 | KERIMOGLU C, AGIS-BALBOA R C, KRANZ A, et al.. Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice[J]. J. Neurosci., 2013, 33(8): 3452-3464. |
21 | GAO X, CHEN Q, YAO H, et al.. Epigenetics in Alzheimer's disease[J/OL]. Front. Aging Neurosci., 2022, 14: 911635[2024-05-28]. . |
22 | NG R, KALINOUSKY A, HARRIS J. Epigenetics of cognition and behavior: insights from Mendelian disorders of epigenetic machinery[J/OL]. J. Neurodev. Disord., 2023, 15(1): 16[2024-05-28]. . |
23 | ISLAM S M T, WON J, KHAN M, et al.. Hypoxia-inducible factor-1 drives divergent immunomodulatory functions in the pathogenesis of autoimmune diseases[J]. Immunology, 2021, 164(1): 31-42. |
24 | NANDURI J, MAKARENKO V, REDDY V D, et al.. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis[J]. Proc. Natl. Acad. Sci. USA, 2012, 109(7): 2515-2520. |
25 | NANDURI J, PENG Y J, WANG N, et al.. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia[J]. J. Physiol., 2017, 595(1): 63-77. |
26 | LAVIE L. Obstructive sleep apnoea syndrome: an oxidative stress disorder[J]. Sleep Med. Rev., 2003, 7(1): 35-51. |
27 | GOZAL D, CRABTREE V M, SANS CAPDEVILA O, et al.. C-reactive protein, obstructive sleep apnea, and cognitive dysfunction in school-aged children[J]. Am. J. Respir. Crit. Care Med., 2007, 176(2): 188-193. |
28 | LEGAKI E, TAKA S, PAPADOPOULOS N G. The complexity in DNA methylation analysis of allergic diseases[J]. Curr. Opin. Allergy Clin. Immunol., 2023, 23(2): 172-178. |
29 | HUDON THIBEAULT A A, LAPRISE C. Cell-specific DNA methylation signatures in asthma[J/OL]. Genes (Basel), 2019, 10(11): 932[2024-05-28]. . |
30 | WU X, GONG L, XIE L, et al.. NLRP3 deficiency protects against intermittent hypoxia-induced neuroinflammation and mitochondrial ROS by promoting the PINK1-parkin pathway of mitophagy in a murine model of sleep apnea[J/OL]. Front. Immunol., 2021, 12: 628168[2024-05-28]. . |
31 | KIM J, BHATTACHARJEE R, KHALYFA A, et al.. DNA methylation in inflammatory genes among children with obstructive sleep apnea[J]. Am. J. Respir. Crit. Care Med., 2012, 185(3): 330-338. |
32 | CHEN Y C, HUANG K T, SU M C, et al.. Aberrant DNA methylation levels of the formyl peptide receptor 1/2/3 genes are associated with obstructive sleep apnea and its clinical phenotypes[J]. Am. J. Transl. Res., 2020, 12(6): 2521-2537. |
33 | PUECH C, BADRAN M, RUNION A R, et al.. Cognitive impairments, neuroinflammation and blood-brain barrier permeability in mice exposed to chronic sleep fragmentation during the daylight period[J/OL]. Int. J. Mol. Sci., 2023, 24(12): 9880[2024-05-28]. . |
34 | SMITH S M C, FRIEDLE S A, WATTERS J J. Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression[J/OL]. PLoS One, 2013, 8(12): e81584[2024-05-28]. . |
35 | SHI Y, GUO X, ZHANG J, et al.. DNA binding protein HMGB1 secreted by activated microglia promotes the apoptosis of hippocampal neurons in diabetes complicated with OSA[J]. Brain Behav. Immun., 2018, 73: 482-492. |
36 | KARUNAKARAN I, ALAM S, JAYAGOPI S, et al.. Neural sphingosine 1-phosphate accumulation activates microglia and links impaired autophagy and inflammation[J]. Glia, 2019, 67(10): 1859-1872. |
37 | GOZAL D, DANIEL J M, DOHANICH G P. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat[J]. J. Neurosci., 2001, 21(7): 2442-2450. |
38 | ROW B W, LIU R, XU W, et al.. Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat[J]. Am. J. Respir. Crit. Care Med., 2003, 167(11): 1548-1553. |
39 | LI R C, ROW B W, KHEIRANDISH L, et al.. Nitric oxide synthase and intermittent hypoxia-induced spatial learning deficits in the rat[J]. Neurobiol. Dis., 2004, 17(1): 44-53. |
40 | WANG N, PENG Y J, SU X, et al.. Histone deacetylase 5 is an early epigenetic regulator of intermittent hypoxia induced sympathetic nerve activation and blood pressure[J/OL]. Front. Physiol., 2021, 12: 688322[2024-05-28]. . |
41 | CHEN Y C, HSU P Y, CHIN C H, et al.. H3K23/H3K36 hypoacetylation and HDAC1 up-regulation are associated with adverse consequences in obstructive sleep apnea patients[J/OL]. Sci. Rep., 2021, 11(1): 20697[2024-05-28]. . |
42 | CORTESE R, GILELES-HILLEL A, KHALYFA A, et al.. Aorta macrophage inflammatory and epigenetic changes in a murine model of obstructive sleep apnea: potential role of CD36[J/OL]. Sci. Rep., 2017, 7: 43648[2024-05-28]. . |
43 | CRONICAN A A, FITZ N F, CARTER A, et al.. Genome-wide alteration of histone H3K9 acetylation pattern in mouse offspring prenatally exposed to arsenic[J/OL]. PLoS One, 2013, 8(2): e53478[2024-05-28]. . |
44 | LIN Y, LIN A, CAI L, et al.. ACSS2-dependent histone acetylation improves cognition in mouse model of Alzheimer's disease[J/OL]. Mol. Neurodegener., 2023, 18(1): 47[2024-05-28]. . |
45 | WU T, SUN X Y, YANG X, et al.. Histone H3K9 trimethylation downregulates the expression of brain-derived neurotrophic factor in the dorsal hippocampus and impairs memory formation during anaesthesia and surgery[J/OL]. Front. Mol. Neurosci., 2019, 12: 246[2024-05-28]. . |
46 | CIPTASARI U, VAN BOKHOVEN H. The phenomenal epigenome in neurodevelopmental disorders[J/OL]. Hum. Mol. Genet., 2020, 29(R1): R42-R50 [2024-05-28]. . |
47 | LEWERISSA E I, NADIF K N, LINDA K. Epigenetic regulation of autophagy-related genes: implications for neurodevelopmental disorders[J]. Autophagy, 2024, 20(1): 15-28. |
48 | MAIN P, TAN W J, WHEELER D, et al.. Increased abundance of nuclear HDAC4 impairs neuronal development and long-term memory[J/OL]. Front. Mol. Neurosci., 2021, 14: 616642[2024-05-28]. . |
49 | YU Y, TAN Y, LIAO X, et al.. HIF-1A regulates cognitive deficits of post-stroke depressive rats[J/OL]. Behav. Brain Res., 2024, 458: 114685[2024-05-28]. . |
50 | DOBRYNIN G, MCALLISTER T E, LESZCZYNSKA K B, et al.. KDM4A regulates HIF-1 levels through H3K9me3[J/OL]. Sci. Rep., 2017, 7(1): 11094[2024-05-28]. . |
51 | LIU Y F, HU R, ZHANG L F, et al.. Effects of dexmedetomidine on cognitive dysfunction and neuroinflammation via the HDAC2/HIF-1α/PFKFB3 axis in a murine model of postoperative cognitive dysfunction[J/OL]. J. Biochem. Mol. Toxicol., 2022, 36(6): e23044[2024-07-28. . |
52 | 陈玲玲,冯珊珊,范祖森,等.非编码RNA研究进展[J].中国科学:生命科学,2019,49(12):1573-1605. |
CHEN L L, FENG S S, FAN Z S, et al.. Progress in non-coding RNA research[J]. Sci. Sin. Vitae, 2019, 49(12): 1573-1605. | |
53 | WCHOI S, KIM H W, WNAM J. The small peptide world in long noncoding RNAs[J]. Brief. Bioinform., 2019, 20(5): 1853-1864. |
54 | ZHOU Z, NI H, LI Y, et al.. LncRNA XIST promotes inflammation by downregulating GRα expression in the adenoids of children with OSAHS[J/OL]. Exp. Ther. Med., 2021, 21(5): 500[2024-05-28]. . |
55 | DU P, WANG J, HAN Y, et al.. Blocking the LncRNA MALAT1/miR-224-5p/NLRP3 axis inhibits the hippocampal inflammatory response in T2DM with OSA[J/OL]. Front. Cell. Neurosci., 2020, 14: 97[2024-05-28]. . |
56 | BARTEL D P. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233. |
57 | KROL J, LOEDIGE I, FILIPOWICZ W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat. Rev. Genet., 2010, 11(9): 597-610. |
58 | GUO H, INGOLIA N T, WEISSMAN J S, et al.. Mammalian microRNAs predominantly act to decrease target mRNA levels[J]. Nature, 2010, 466(7308): 835-840. |
59 | KHURANA S, SHARDA S, SAHA B, et al.. Canvassing the aetiology, prognosis and molecular signatures of obstructive sleep apnoea[J]. Biomarkers, 2019, 24(1): 1-16. |
60 | LIU K X, CHEN G P, LIN P L, et al.. Detection and analysis of apoptosis- and autophagy-related miRNAs of mouse vascular endothelial cells in chronic intermittent hypoxia model[J]. Life Sci., 2018, 193: 194-199. |
61 | MENG S, CAO J, WANG L, et al.. MicroRNA 107 partly inhibits endothelial progenitor cells differentiation via HIF-1β[J/OL]. PLoS One, 2012, 7(7): e40323[2024-05-28]. . |
62 | BLOUNT G S, COURSEY L, KOCERHA J. MicroRNA networks in cognition and dementia[J/OL]. Cells, 2022, 11(12): 1882[2024-05-28]. . |
63 | TOYAMA K, SPIN J M, DENG A C, et al.. MicroRNA-mediated therapy modulating blood-brain barrier disruption improves vascular cognitive impairment[J]. Arterioscler. Thromb. Vasc. Biol., 2018, 38(6): 1392-1406. |
64 | LI K, WEI P, QIN Y, et al.. MicroRNA expression profiling and bioinformatics analysis of dysregulated microRNAs in obstructive sleep apnea patients[J/OL]. Medicine (Baltimore), 2017, 96(34): e7917[2024-05-28]. . |
65 | CHEN Q, HONG Z, CHEN Z, et al.. CircRNA expression profiles and functional analysis in a mouse model of chronic intermittent hypoxia-induced renal injury: new insight into pathogenesis[J/OL]. PeerJ, 2023, 11: e14957[2024-05-28]. . |
66 | ZENG X, YUAN X, CAI Q, et al.. Circular RNA as an epigenetic regulator in chronic liver diseases[J/OL]. Cells, 2021, 10(8): 1945[2024-05-28]. . |
67 | CHEN Q, LIN J, CHEN Z, et al.. Circular RNA expression alterations and function prediction in OSA-induced pancreatic injury in mice: new insights into pathogenesis[J/OL]. PLoS One, 2023, 18(4): e0284459[2024-05-28]. . |
68 | LAI S, CHEN L, ZHAN P, et al.. Circular RNA expression profiles and bioinformatic analysis in mouse models of obstructive sleep apnea-induced cardiac injury: novel insights into pathogenesis[J/OL]. Front. Cell Dev. Biol., 2021, 9: 767283[2024-05-28]. . |
69 | CHEN L D, HUANG J F, LIN X J, et al.. Expression profiling and functional analysis of circular RNAs in vitro model of intermittent hypoxia-induced liver injury[J/OL]. Front. Physiol., 2022, 13: 972407[2024-05-28]. . |
70 | JEHAN S, AUGUSTE E, PANDI-PERUMAL S R, et al.. Depression, obstructive sleep apnea and psychosocial health[J]. Sleep Med. Disord., 2017, 1(3): 00012. |
71 | VELESCU D R, MARC M S, TRAILA D, et al.. A narrative review of self-reported scales to evaluate depression and anxiety symptoms in adult obstructive sleep apnea patients[J/OL]. Medicina (Kaunas), 2024, 60(2): 261[2024-05-28]. . |
72 | GUPTA M A, SIMPSON F C. Obstructive sleep apnea and psychiatric disorders: a systematic review[J]. J. Clin. Sleep Med., 2015, 11(2): 165-175. |
73 | GARBARINO S, BARDWELL W A, GUGLIELMI O, et al.. Association of anxiety and depression in obstructive sleep apnea patients: a systematic review and meta-analysis[J]. Behav. Sleep Med., 2020, 18(1): 35-57. |
74 | EDWARDS C, MUKHERJEE S, SIMPSON L, et al.. Depressive symptoms before and after treatment of obstructive sleep apnea in men and women[J]. J. Clin. Sleep Med., 2015, 11(9): 1029-1038. |
75 | CHEN Y H, KELLER J K, KANG J H, et al.. Obstructive sleep apnea and the subsequent risk of depressive disorder: a population-based follow-up study[J]. J. Clin. Sleep Med., 2013, 9(5): 417-423. |
76 | PEPPARD P E, SZKLO-COXE M, HLA K M, et al.. Longitudinal association of sleep-related breathing disorder and depression[J]. Arch. Intern. Med., 2006, 166(16): 1709-1715. |
77 | BARDWELL W A, NORMAN D, ANCOLI-ISRAEL S, et al.. Effects of 2-week nocturnal oxygen supplementation and continuous positive airway pressure treatment on psychological symptoms in patients with obstructive sleep apnea: a randomized placebo-controlled study[J]. Behav. Sleep Med., 2007, 5(1): 21-38. |
78 | SIEGEL J M. The neurotransmitters of sleep[J]. J. Clin. Psychiatry, 2004, 65(): 4-7. |
79 | DUMAN R S, SANACORA G, KRYSTAL J H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments[J]. Neuron, 2019, 102(1): 75-90. |
80 | BOZIC J, BOROVAC J A, GALIC T, et al.. Adropin and inflammation biomarker levels in male patients with obstructive sleep apnea: a link with glucose metabolism and sleep parameters[J]. J. Clin. Sleep Med., 2018, 14(7): 1109-1118. |
81 | BEUREL E, TOUPS M, NEMEROFF C B. The bidirectional relationship of depression and inflammation: double trouble[J]. Neuron, 2020, 107(2): 234-256. |
82 | YI M, ZHAO W, FEI Q, et al.. Causal analysis between altered levels of interleukins and obstructive sleep apnea[J/OL]. Front. Immunol., 2022, 13: 888644[2024-05-28]. . |
83 | KARAMANLI H, YALCINOZ T, YALCINOZ M A, et al.. A prediction model based on artificial neural networks for the diagnosis of obstructive sleep apnea[J]. Sleep Breath., 2016, 20(2): 509-514. |
84 | BRENNAN H L, KIRBY S D. Barriers of artificial intelligence implementation in the diagnosis of obstructive sleep apnea[J/OL]. J. Otolaryngol. Head Neck Surg., 2022, 51(1): 16[2024-05-28]. . |
85 | ZAPATER A, BARBÉ F, SÁNCHEZ-DE-LA-TORRE M. Micro-RNA in obstructive sleep apnoea: biomarker of cardiovascular outcome?[J]. Curr. Opin. Pulm. Med., 2022, 28(6): 559-570. |
86 | CORRÊA T A, ROGERO M M. Polyphenols regulating microRNAs and inflammation biomarkers in obesity[J]. Nutrition, 2019, 59: 150-157. |
87 | VASU S, KUMANO K, DARDEN C M, et al.. MicroRNA signatures as future biomarkers for diagnosis of diabetes states[J/OL]. Cells, 2019, 8(12): 1533[2024-05-28]. . |
88 | MA Y. The challenge of microRNA as a biomarker of epilepsy[J]. Curr. Neuropharmacol., 2018, 16(1): 37-42. |
89 | TOYAMA K, MOGI M, TSAO P S. MicroRNA-based biomarker for dementia[J]. Aging (Albany NY), 2019, 11(5): 1329-1330. |
90 | HE L, LIU J, WANG X, et al.. Identifying a novel serum microRNA biomarker panel for the diagnosis of childhood asthma[J]. Exp. Biol. Med. (Maywood), 2022, 247(19): 1732-1740. |
91 | CHEN Y C, CHEN T W, SU M C, et al.. Whole genome DNA methylation analysis of obstructive sleep apnea: IL1R2, NPR2, AR, SP140 methylation and clinical phenotype[J]. Sleep, 2016, 39(4): 743-755. |
92 | FLEURY CURADO T, OLIVEN A, SENNES L U, et al.. Neurostimulation treatment of OSA[J]. Chest, 2018, 154(6): 1435-1447. |
93 | SAWYER A M, GOONERATNE N S, MARCUS C L, et al.. A systematic review of CPAP adherence across age groups: clinical and empiric insights for developing CPAP adherence interventions[J]. Sleep Med. Rev., 2011, 15(6): 343-356. |
94 | TARANTO-MONTEMURRO L, MESSINEO L, SANDS S A, et al.. The combination of atomoxetine and oxybutynin greatly reduces obstructive sleep apnea severity. A randomized, placebo-controlled, double-blind crossover trial[J]. Am. J. Respir. Crit. Care Med., 2019, 199(10): 1267-1276. |
95 | NISHINO S, OKURO M. Armodafinil for excessive daytime sleepiness[J]. Drugs Today (Barc), 2008, 44(6): 395-414. |
96 | TARANTO-MONTEMURRO L, MESSINEO L, AZARBARZIN A, et al.. Effects of the combination of atomoxetine and oxybutynin on OSA endotypic traits[J]. Chest, 2020, 157(6): 1626-1636. |
97 | PERGER E, TARANTO MONTEMURRO L, ROSA D, et al.. Reboxetine plus oxybutynin for OSA treatment: a 1-week, randomized, placebo-controlled, double-blind crossover trial[J]. Chest, 2022, 161(1): 237-247. |
98 | GAMBINO F, ZAMMUTO M M, VIRZÌ A, et al.. Treatment options in obstructive sleep apnea[J]. Intern. Emerg. Med., 2022, 17(4): 971-978. |
99 | UNIKEN VENEMA J A M, ROSENMÖLLER B R A M, DE VRIES N, et al.. Mandibular advancement device design: a systematic review on outcomes in obstructive sleep apnea treatment[J/OL]. Sleep Med. Rev., 2021, 60: 101557[2024-05-28]. . |
[1] | 季洁, 孔雅茹, 王珊, 邰隽. 基于气相色谱-质谱联用技术检测阻塞性睡眠呼吸暂停儿童血浆代谢变化的研究[J]. 生物技术进展, 2024, 14(4): 657-667. |
[2] | 赵歆, 李鑫玉, 李明浩, 周诗艺, 邓雅琪, 郑至远, 邹伟. 秀丽隐杆线虫模型在记忆和遗忘行为研究中的运用[J]. 生物技术进展, 2023, 13(6): 837-843. |
[3] | 曾雨冰, 何学佳, 刘帆, 裴培, 王珊. TET酶的生物学功能及相关机制的研究进展[J]. 生物技术进展, 2022, 12(5): 721-727. |
[4] | 王向阳, 刘安军, 赵晶. 右美托咪定对慢性应激抑郁妊娠大鼠子代发育及空间学习记忆能力的影响[J]. 生物技术进展, 2022, 12(1): 135-141. |
[5] | 徐奚如,张彪,顾晓群. 系统生物学在认知功能障碍研究中的应用[J]. 生物技术进展, 2020, 10(2): 124-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部