生物技术进展 ›› 2024, Vol. 14 ›› Issue (4): 509-518.DOI: 10.19586/j.2095-2341.2024.0015
• 进展评述 •
李亦君1,2(), 夏琳1, 杨小贝1, 谢小东1, 李锋1, 杨军1, 宁黔冀2, 武明珠1(
)
收稿日期:
2024-01-29
接受日期:
2024-05-28
出版日期:
2024-07-25
发布日期:
2024-08-07
通讯作者:
武明珠
作者简介:
李亦君E-mail: liyijun124@163.com;
基金资助:
Yijun LI1,2(), Lin XIA1, Xiaobei YANG1, Xiaodong XIE1, Feng LI1, Jun YANG1, Qianji NING2, Mingzhu WU1(
)
Received:
2024-01-29
Accepted:
2024-05-28
Online:
2024-07-25
Published:
2024-08-07
Contact:
Mingzhu WU
摘要:
植物多酚是植物体内具有多元酚结构的一类复杂的酚类次生代谢物,能够应对生物和非生物胁迫引起的氧化损伤,因此在植物生长发育过程中具有重要的作用。光照对植物的生长发育及多酚类物质合成具有至关重要的影响,其主要通过调控苯丙烷等代谢途径基因影响多酚类物质的合成。简述了多酚类物质的合成途径,并从光周期、光照强度以及光质三方面总结光照对多酚类物质合成的影响,旨在为今后多酚类物质的调控机制提供理论基础。
中图分类号:
李亦君, 夏琳, 杨小贝, 谢小东, 李锋, 杨军, 宁黔冀, 武明珠. 光照调控植物多酚类物质合成的研究进展[J]. 生物技术进展, 2024, 14(4): 509-518.
Yijun LI, Lin XIA, Xiaobei YANG, Xiaodong XIE, Feng LI, Jun YANG, Qianji NING, Mingzhu WU. Research Progress on Light-regulated Synthesis of Plant Polyphenols[J]. Current Biotechnology, 2024, 14(4): 509-518.
中文全称 | 英文全称 | 缩写词 |
---|---|---|
苯丙氨酸解氨酶 | Phenylalanine ammonia lyase | PAL |
反式肉桂酸4-羟化酶 | Trans-cinnamic acid 4- hydroxylase | C4H |
咖啡酸3-O-甲基转移酶 | Caffeic acid 3-o-methyl transferase | COMT |
咖啡酰辅酶A-甲基转移酶 | Caffeoyl-coa-methyl transferase | CCOAOMT |
肉桂醇脱氢酶 | Innamyl alcohol dehydrogenase | CAD |
过氧化物酶 | Peroxidase | POD |
4-香豆酸辅酶A连接酶 | 4- Coumaric acid coenzyme a ligase | 4CL |
查尔酮异构酶 | Chalcone isomerase | CHI |
黄酮3'-羟化酶 | Flavanone-3-hydroxylase | F3H |
二氢黄酮醇4-还原酶 | Dihydroflavonol 4-reductase | DFR |
UDP-葡萄糖类黄酮3-O-葡萄糖基转移酶 | UDP-glucose flavonoid 3-o-glucosyl transferase | UFGT |
查尔酮合成酶 | Chalcone synthase | CHS |
花青素合成酶 | Anthocyanidin synthase | ANS |
花色素还原酶 | Anthocyanin reductase | ANR |
类黄酮3',5'-羟化酶 | Flavonoid 3',5'-hydroxylase | F3'5'H |
黄酮醇合成酶 | Flavonol synthase | FLS |
阿魏酸5-羟化酶 | Ferulic acid 5- hydroxylase | F5H |
羟基肉桂酰辅酶A莽草酸/奎尼酸羟基肉桂酰转移酶 | Hydroxycinnamoyl coa shikimate/quinate Hydroxycinnamoyltransferase | HCT |
对香豆酰奎宁酸/莽草酸酯3-羟化酶 | ρ-Coumaroylester 3-hydroxylases | C3H |
羟基肉桂酰辅酶A奎尼酸羟基肉桂酰转移酶 | Hydroxycinnamoyl-coa quinate hydroxy-cinnamoyl transferase | HQT |
表1 苯丙烷代谢关键基因名称
Table 1 The full name key genes in phenylpropanoid metabolic pathway
中文全称 | 英文全称 | 缩写词 |
---|---|---|
苯丙氨酸解氨酶 | Phenylalanine ammonia lyase | PAL |
反式肉桂酸4-羟化酶 | Trans-cinnamic acid 4- hydroxylase | C4H |
咖啡酸3-O-甲基转移酶 | Caffeic acid 3-o-methyl transferase | COMT |
咖啡酰辅酶A-甲基转移酶 | Caffeoyl-coa-methyl transferase | CCOAOMT |
肉桂醇脱氢酶 | Innamyl alcohol dehydrogenase | CAD |
过氧化物酶 | Peroxidase | POD |
4-香豆酸辅酶A连接酶 | 4- Coumaric acid coenzyme a ligase | 4CL |
查尔酮异构酶 | Chalcone isomerase | CHI |
黄酮3'-羟化酶 | Flavanone-3-hydroxylase | F3H |
二氢黄酮醇4-还原酶 | Dihydroflavonol 4-reductase | DFR |
UDP-葡萄糖类黄酮3-O-葡萄糖基转移酶 | UDP-glucose flavonoid 3-o-glucosyl transferase | UFGT |
查尔酮合成酶 | Chalcone synthase | CHS |
花青素合成酶 | Anthocyanidin synthase | ANS |
花色素还原酶 | Anthocyanin reductase | ANR |
类黄酮3',5'-羟化酶 | Flavonoid 3',5'-hydroxylase | F3'5'H |
黄酮醇合成酶 | Flavonol synthase | FLS |
阿魏酸5-羟化酶 | Ferulic acid 5- hydroxylase | F5H |
羟基肉桂酰辅酶A莽草酸/奎尼酸羟基肉桂酰转移酶 | Hydroxycinnamoyl coa shikimate/quinate Hydroxycinnamoyltransferase | HCT |
对香豆酰奎宁酸/莽草酸酯3-羟化酶 | ρ-Coumaroylester 3-hydroxylases | C3H |
羟基肉桂酰辅酶A奎尼酸羟基肉桂酰转移酶 | Hydroxycinnamoyl-coa quinate hydroxy-cinnamoyl transferase | HQT |
1 | SALAMI M, HEIDARI B, BATLEY J, et al.. Integration of genome-wide association studies, metabolomics, and transcriptomics reveals phenolic acid- and flavonoid-associated genes and their regulatory elements under drought stress in rapeseed flowers[J/OL]. Front. Plant Sci., 2023, 14: 1249142[2024-06-09]. . |
2 | HANO C, TUNGMUNNITHUM D. Plant polyphenols, more than just simple natural antioxidants: oxidative stress, aging and age-related diseases[J/OL]. Medicines, 2020, 7(5): 26[2024-06-09]. . |
3 | PUUPPONEN-PIMIÄ R, AURA A M, OKSMAN-CALDENTEY K M, et al.. Development of functional ingredients for gut health[J]. Trends Food Sci. Technol., 2002, 13(1): 3-11. |
4 | 吴红艳. 杜仲叶多酚类物质提取工艺及抗氧化抗肿瘤研究[D]. 长沙: 湖南农业大学, 2020. |
5 | 张花, 顾丽莉, 黄智华, 等. 烟草多酚的提取分离及分析研究进展[J]. 化学通报, 2021, 84(9): 900-905. |
ZHANG H, GU L L, HUANG Z H, et al.. Research progress in extraction, separation and analysis of polyphenols in tobacco[J]. Chemistry, 2021, 84(9): 900-905. | |
6 | KUMAR V, SHARMA A, KOHLI S K, et al.. Differential distribution of polyphenols in plants using multivariate techniques[J]. Biotechnol. Res. Innov., 2019, 3(1): 1-21. |
7 | MATHESIUS U. Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase[J]. J. Exp. Bot., 2001, 52(SUPPL_1): 419-426. |
8 | CHEN Z, YU L, WANG X, et al.. Changes of phenolic profiles and antioxidant activity in canaryseed (Phalaris canariensis L.) during germination[J]. Food Chem., 2016, 194: 608-618. |
9 | CHEYNIER V, COMTE G, DAVIES K M, et al.. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology[J]. Plant Physiol. Biochem., 2013, 72: 1-20. |
10 | LATTANZIO V, CARDINALI A, RUTA C, et al.. Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress[J]. Environ. Exp. Bot., 2009, 65(1): 54-62. |
11 | 杨巍巍, 邓航, 李娇, 等. 植物多酚化合物抗氧化损伤研究进展[J]. 现代食品, 2020(16): 74-78. |
YANG W W, DENG H, LI J, et al.. Research progress on antioxidant damage of plant polyphenols[J]. Mod. Food, 2020(16): 74-78. | |
12 | SINGH B, SINGH J P, KAUR A, et al.. Phenolic composition and antioxidant potential of grain legume seeds: a review[J]. Food Res. Int., 2017, 101: 1-16. |
13 | 刘少静, 沈晶晶, 卢颖, 等. 丹皮酚、绿原酸和没食子酸复配物的体外抗氧化活性[J]. 化工科技, 2022, 30(1): 5-8. |
LIU S J, SHEN J J, LU Y, et al.. Antioxidant properties of paeonol, chlorogenic acid, gallic acid and theirmixtures in vitro [J]. Sci. Technol. Chem. Ind., 2022, 30(1): 5-8. | |
14 | REHMAN M, ULLAH S, BAO Y, et al.. Light-emitting diodes: whether an efficient source of light for indoor plants?[J]. Environ. Sci. Pollut. Res. Int., 2017, 24(32): 24743-24752. |
15 | DJERRAB D, BERTRAND B, BREITLER J C, et al.. Photoperiod-dependent transcriptional modifications in key metabolic pathways in Coffea arabica [J]. Tree Physiol., 2021, 41(2): 302-316. |
16 | WOOD W H J, BARNETT S F H, FLANNERY S, et al.. Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with PSI[J]. Plant Physiol., 2019, 180(4): 2152-2166. |
17 | GUINEA DIAZ M, NIKKANEN L, HIMANEN K, et al.. Two chloroplast thioredoxin systems differentially modulate photosynthesis in Arabidopsis depending on light intensity and leaf age[J]. Plant J. Cell Mol. Biol., 2020, 104(3): 718-734. |
18 | USMAN H, ULLAH M A, JAN H, et al.. Interactive effects of wide-spectrum monochromatic lights on phytochemical production, antioxidant and biological activities of Solanum xanthocarpum callus cultures[J/OL]. Molecules, 2020, 25(9): 2201[2024-06-09]. . |
19 | LI K, JI L, XING Y, et al.. Data-independent acquisition proteomics reveals the effects of red and blue light on the growth and development of moso bamboo (Phyllostachys edulis) seedlings[J/OL]. Int. J. Mol. Sci., 2023, 24(6): 5103[2024-06-09]. . |
20 | 曾珍, 陈万生, 肖莹. 植物必需金属离子对药用植物次生代谢产物生物合成的作用[J]. 植物生理学报, 2022, 58(4): 597-606. |
ZENG Z, CHEN W S, XIAO Y. The effects of essential metal ions on the biosynthesis of secondary metabolites in medicinal plants[J]. Plant Physiol. J., 2022, 58(4): 597-606. | |
21 | LIANG Z, HU Q N, LUO Z S, et al.. Combined phenolomic approaches reveal elevated CO2 influences phenolic biosynthesis in wolfberry (Lycium barbarum) [J/OL]. Postharvest Biol. Tec., 2023, 204: 112456[2024-01-26] . |
22 | 李莉, 赵越, 马君兰. 苯丙氨酸代谢途径关键酶: PAL、C4H、4CL研究新进展[J]. 生物信息学, 2007, 5(4): 187-189. |
LI L, ZHAO Y, MA J L. Recent progress on key enzymes: PAL, C4H, 4CL of phenylalanine metabolism pathway[J]. China J. Bioinform., 2007, 5(4): 187-189. | |
23 | CHOI O, WU C Z, KANG S Y, et al.. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli [J]. J. Ind. Microbiol. Biotechnol., 2011, 38(10): 1657-1665. |
24 | SORIANO G, DEL-CASTILLO-ALONSO M Á, MONFORTE L, et al.. Photosynthetically-active radiation, UV-A and UV-B, causes both common and specific damage and photoprotective responses in the model liverwort Marchantia polymorpha subsp. ruderalis[J]. Photochem. Photobiol. Sci., 2019, 18(2): 400-412. |
25 | OHARA T, SATAKE A. Photosynthetic entrainment of the circadian clock facilitates plant growth under environmental fluctuations: perspectives from an integrated model of phase oscillator and phloem transportation[J/OL]. Front. Plant Sci., 2017, 8: 1859[2024-06-09]. . |
26 | 刘景玲, 齐志鸿, 郝文芳, 等. UV-B辐射和干旱对丹参生长和叶片中酚酸类成分的影响[J]. 生态学报, 2015, 35(14): 4642-4650. |
LIU J L, QI Z H, HAO W F, et al.. The effects of drought and UV-B radiation on the growth and the phenolic compounds of the Salvia miltiorrhiza Bunge leaf[J]. Acta Ecol. Sin., 2015, 35(14): 4642-4650. | |
27 | LIU K, GAO M, JIANG H, et al.. Light intensity and photoperiod affect growth and nutritional quality of Brassica microgreens[J/OL]. Molecules, 2022, 27(3): 883[2024-06-09]. . |
28 | 严文一, 贺忠群, 王一鸣, 等. 光周期对人参菜开花和品质的调控作用[J].西北植物学报,2020,40(8):1364-1371. |
YAN W Y, HE Z Q, WANG Y M, et al.. Regulation of photoperiod on flowering and quality of Talinum crassifolium (jacq.) gaertn[J]. Acta Bot. Boreali Occidentalia Sin., 2020, 40(8): 1364-1371. | |
29 | ATIF M J, AMIN B, GHANI M I, et al.. Allium sativum L. (Garlic) bulb enlargement as influenced by differential combinations of photoperiod and temperature[J/OL]. Food Chem., 2021, 338: 127991[2024-06-09]. . |
30 | ULEBERG E, ROHLOFF J, JAAKOLA L, et al.. Effects of temperature and photoperiod on yield and chemical composition of northern and southern clones of bilberry (Vaccinium myrtillus L.)[J]. J. Agric. Food Chem., 2012, 60(42): 10406-10414. |
31 | EID G M, ALBATAL N, HADDAD S. Effect of photoperiod on the flowering of some cultivars of Hydrangea (Hydrangea macrophylla)[J/OL]. Int. J. Hortic., 2016: 6[2024-06-09]. . |
32 | 张渊博, 郝文琴, 石玉, 等. 不同光周期下外源锌对水培生菜生长和品质的影响[J]. 中国农学通报, 2022, 38(13): 41-46. |
ZHANG Y B, HAO W Q, SHI Y, et al.. Effects of exogenous zinc on the growth and quality of hydroponic lettuce under different photoperiods[J]. Chin. Agric. Sci. Bull., 2022, 38(13): 41-46. | |
33 | GAO M, HE R, SHI R, et al.. Differential effects of low light intensity on broccoli microgreens growth and phytochemicals[J/OL]. Agronomy, 2021, 11(3): 537[2024-06-09]. . |
34 | 赵天瑶, 王丽云, 姜宏伟, 等. 豆类种子及其芽苗菜的营养品质、功能性成分及抗氧化性研究[J]. 食品与发酵工业, 2020, 46(5): 83-90. |
ZHAO T Y, WANG L Y, JIANG H W, et al.. Nutritional quality, phenolic profile and antioxidant activity in legumes seeds and their sprouts[J]. Food Ferment. Ind., 2020, 46(5): 83-90. | |
35 | 毕伟伟, 赵贵兴, 夏晓雨, 等. 光照对大豆萌发过程中蛋白质和异黄酮的影响[J]. 黑龙江农业科学, 2020(12): 37-41. |
BI W W, ZHAO G X, XIA X Y, et al.. Effects of light on isoflavone and protein during germination of soybean[J]. Heilongjiang Agric. Sci., 2020(12): 37-41. | |
36 | CARVALHO I S, CAVACO T, CARVALHO L M, et al.. Effect of photoperiod on flavonoid pathway activity in sweet potato (Ipomoea batatas (L.) Lam.) leaves[J]. Food Chem., 2010, 118(2): 384-390. |
37 | DONG W, LI M, LI Z, et al.. Transcriptome analysis of the molecular mechanism of Chrysanthemum flower color change under short-day photoperiods[J]. Plant Physiol. Biochem., 2020, 146: 315-328. |
38 | LIU B Y, CHEN Y W, JIN M K, et al.. Effects of altitude on polyphenol content in cigars[J]. Agri. Sci. Tech., 2020, 21(4): 15-22. |
39 | 郑明, 周冀衡, 黄勇. 光照强度对烤烟烟苗生长和代谢产物含量的影响[J]. 作物研究, 2009, 23(3): 181-183. |
ZHENG M, ZHOU J H, HUANG Y. Effects of illumination intensity on growth of tobacco seedling and content of metabolites[J]. Crop Res., 2009, 23(3): 181-183. | |
40 | WU B H, NIU N, LI J H, et al.. Leaf: fruit ratio affects the proteomic profile of grape berry skins[J]. J. Amer. Soc. Hort. Sci., 2013, 138(6): 416-427. |
41 | PROIETTI S, MOSCATELLO S, GIACOMELLI G A, et al.. Influence of the interaction between light intensity and CO2 concentration on productivity and quality of spinach (Spinacia oleracea L.) grown in fully controlled environment[J]. Adv. Space Res., 2013, 52(6): 1193-1200. |
42 | SONG J, HUANG H, HAO Y, et al.. Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration[J/OL]. Sci. Rep., 2020, 10(1): 2796[2024-06-09]. . |
43 | ARENA M E, POSTEMSKY P D, CURVETTO N R. Changes in the phenolic compounds and antioxidant capacity of Berberis microphylla G. Forst. berries in relation to light intensity and fertilization[J]. Sci. Hortic., 2017, 218: 63-71. |
44 | LEE H R, KIM H M, JEONG H W, et al.. Growth and bioactive compound content of Glehnia littoralis Fr. Schmidt ex miquel grown under different CO2 concentrations and light intensities[J/OL]. Plants, 2020, 9(11): 1581[2024-06-09]. . |
45 | MA Y, LIU Y, YANG P, et al.. The synthesis mechanism of chlorogenic acid in leaves of Eucommia ulmoides oliver[J]. App. Ecol. Env. Res., 2020, 18(2): 2719-2725. |
46 | RE G A, PILUZZA G, SANNA F, et al.. Polyphenolic composition and antioxidant capacity of legume-based swards are affected by light intensity in a Mediterranean agroforestry system[J]. J. Sci. Food Agric., 2019, 99(1): 191-198. |
47 | GHASEMZADEH A, GHASEMZADEH N. Effects of shading on synthesis and accumulation of polyphenolic compounds in ginger (Zingiber officinale Roscoe) varieties[J]. J. Med. Plants Res., 2011, 5(11): 2435-2441. |
48 | 唐世梅, 蔡文淇, 张大毛, 等. 光照强度对三个虎耳草观赏品种的形态及生理指标的影响[J]. 广西植物, 2023, 43(4): 699-711. |
TANG S M, CAI W Q, ZHANG D M, et al.. Effects of light intensities on morphological and physiological indexes of three ornamental cultivars of Saxifraga stolonifera [J]. Guihaia, 2023, 43(4): 699-711. | |
49 | MA Z H, LI W F, MAO J, et al.. Synthesis of light-inducible and light-independent anthocyanins regulated by specific genes in grape'Marselan' (V . viniferaL.)[J/OL]. PeerJ, 2019, 7: e6521[2024-06-09]. . |
50 | ZHANG Q, LIU M, RUAN J. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves[J/OL]. BMC Plant Biol., 2017, 17(1): 64[2024-06-09]. . |
51 | LIU Y Y, CHEN X R, WANG J P, et al.. Transcriptomic analysis reveals flavonoid biosynthesis of Syringa oblata Lindl. in response to different light intensity[J/OL]. BMC Plant Biol., 2019, 19(1): 487[2024-06-09]. . |
52 | LANDI M, TATTINI M, GOULD K S. Multiple functional roles of anthocyanins in plant-environment interactions[J]. Environ. Exp. Bot., 2015, 119: 4-17. |
53 | AGATI G, TATTINI M. Multiple functional roles of flavonoids in photoprotection[J]. New. Phytol., 2010, 186(4): 786-793. |
54 | AGATI G, AZZARELLO E, POLLASTRI S, et al.. Flavonoids as antioxidants in plants: location and functional significance[J]. Plant Sci. 2012, 196: 67-76. |
55 | KOLB C A, KÄSER M A, KOPECKÝ J, et al.. Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves[J]. Plant Physiol., 2001, 127(3): 863-875. |
56 | CHEN Z, MA Y, YANG R, et al.. Effects of exogenous Ca2+ on phenolic accumulation and physiological changes in germinated wheat (Triticum aestivum L.) under UV-B radiation[J]. Food Chem., 2019, 288: 368-376. |
57 | JENKINS G I. Photomorphogenic responses to ultraviolet-B light[J]. Plant Cell Environ., 2017, 40(11): 2544-2557. |
58 | SHAMALA L F, ZHOU H C, HAN Z X, et al.. UV-B induces distinct transcriptional re-programing in UVR8-signal transduction, flavonoid, and terpenoids pathways in Camellia sinensis [J/OL]. Front. Plant Sci., 2020, 11: 234[2024-06-09]. . |
59 | 王毅, 钟楚, 陈宗瑜, 等. UV-B辐射对烟草(Nicotiana tobacum)叶片总多酚含量和PPO活性的影响[J]. 中国烟草学报, 2010, 16(1): 49-52+57. |
WANG Y, ZHONG C, CHEN Z Y, et al.. Effects of UV-B radiation on total polyphenol content and PPO activity in flue-cured tobacco leaves[J]. Acta Tabacaria Sin., 2010, 16(1): 49-52+57. | |
60 | BARTLEY G E, AVENA-BUSTILLOS R J, DU W X, et al.. Transcriptional regulation of chlorogenic acid biosynthesis in carrot root slices exposed to UV-B light[J]. Plant Gene, 2016, 7: 1-10. |
61 | KERR L D, GRAVATT D A, WIGGERS R J. The effects of ultraviolet light on anthocyanin accumulation in the adventitious roots of Sedum wrightii (Crassulaceae)[J/OL]. Ann. Bio. Sci, 2018, 6(1): [2024-06-09]. . |
62 | 曹婷婷, 曾凯芳, 邓丽莉. 发光二极管蓝光对乙烯褪绿早熟蜜橘果实叶绿素代谢的调控作用[J]. 食品科学, 2023, 44(9): 139-146. |
CAO T T, ZENG K F, DENG L L. Effect of blue light-emitting diode (LED) irradiation on chlorophyll metabolism in ethylene-degreened early-season Satsuma mandarin fruit[J]. Food Sci., 2023, 44(9): 139-146. | |
63 | 潘可可, 王克磊, 李斌奇, 等. 不同比例红蓝光及光照强度对金线莲生理及叶绿素荧光特性的影响[J]. 热带作物学报, 2022, 43(8): 1628-1635. |
PAN K K, WANG K L, LI B Q, et al.. Effects of different proportion of red and blue light and light intensity on physiology and chlorophyll fluorescence characteristics of Anoectochilus roxburghii [J]. Chin. J. Trop. Crops, 2022, 43(8): 1628-1635. | |
64 | OKAMOTO H, DUCREUX L J M, ALLWOOD J W, et al.. Light regulation of chlorophyll and glycoalkaloid biosynthesis during Tuber greening of potato S. tuberosum [J/OL]. Front. Plant Sci., 2020, 11: 753[2024-06-09]. . |
65 | WANG F, ROBSON T M, CASAL J J, et al.. Contributions of cryptochromes and phototropins to stomatal opening through the day[J]. Funct. Plant Biol., 2020, 47(3): 226-238. |
66 | 叶宇芸. 隐花色素CRY1和CRY2在草莓生长发育中的功能鉴定[D]. 雅安: 四川农业大学, 2022. |
67 | 唐千惠, 王佳欣, 孙康, 等. 茶树隐花色素基因CsCRY1和CsCRY2的克隆及表达模式分析[J]. 植物资源与环境学报, 2020, 29(6): 11-22. |
TANG Q H, WANG J X, SUN K, et al.. Cloning of cryptochrome gene CsCRY1 and CsCRY2 in Camellia sinensis and analysis on expression pattern[J]. J. Plant Resour. Environ., 2020, 29(6): 11-22. | |
68 | ZHOU T, MENG L, MA Y, et al.. Overexpression of sweet sorghum cryptochrome 1a confers hypersensitivity to blue light, abscisic acid and salinity in Arabidopsis [J]. Plant Cell Rep., 2018, 37(2): 251-264. |
69 | 王曼. 蓝光诱导拟南芥(Arabidopsis thaliana L.)花色素苷积累及CHS基因表达的信号转导研究[D]. 广州: 华南师范大学, 2003. |
70 | JOHKAN M, SHOJI K, GOTO F, et al.. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce[J]. HortScience, 2010, 45(12): 1809-1814. |
71 | ISHISHITA K, SUETSUGU N, HIROSE Y, et al.. Functional characterization of blue-light-induced responses and PHOTOTROPIN1 gene in Welwitschia mirabilis [J]. J. Plant Res., 2016, 129(2): 175-187. |
72 | CHRISTIE J M, BLACKWOOD L, PETERSEN J, et al.. Plant flavoprotein photoreceptors[J]. Plant Cell Physiol., 2015, 56(3): 401-413. |
73 | KADOMURA-ISHIKAWA Y, MIYAWAKI K, NOJI S, et al.. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria × ananassa fruits[J]. J. Plant Res., 2013, 126(6): 847-857. |
74 | LEE M, XU J, WANG W, et al.. The effect of supplemental blue, red and far-red light on the growth and the nutritional quality of red and green leaf lettuce[J]. Am. J. Plant Sci., 2019, 10(12): 2219-2235. |
75 | 陈兵林, 李浩, 母少东, 等. 有色膜遮光对烤烟生长和光合特性及其初烤品质的影响[J]. 西北植物学报, 2014, 34(4): 792-799. |
CHEN B L, LI H, MU S D, et al.. Effects of different color film shading on growth, photosynthetic characteristics and quality indexes after first baking of flue-cured tobacco[J]. Acta Bot. Boreali Occidentalia Sin., 2014, 34(4): 792-799. | |
76 | KOBORI R, HASHIMOTO S, KOSHIMIZU H, et al.. Flavan-3-ols content in red raspberry leaves increases under blue led-light irradiation[J/OL]. Metabolites, 2019, 9(3): 56[2024-06-09]. . |
77 | HUYSKENS-KEIL S, EICHHOLZ-DÜNDAR I, HASSENBERG K, et al.. Impact of light quality (white, red, blue light and UV-C irradiation) on changes in anthocyanin content and dynamics of PAL and POD activities in apical and basal spear sections of white asparagus after harvest[J/OL]. Postharvest Biol. Technol., 2020, 161: 111069[2024-06-09]. . |
78 | NAOYA FUKUDA M E, YOSHIDA H, KUSANO M. Effects of light quality, photoperiod, CO2 concentration, and air temperature on chlorogenic acid and rutin accumulation in young lettuce plants[J]. Plant Physiol. Biochem., 2022, 186: 290-298. |
79 | ZHANG Y, JIANG L, LI Y, et al.. Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria × ananassa)[J/OL]. Molecules, 2018, 23(4): 820[2024-06-09]. . |
80 | LIU Y, SCHOUTEN R E, TIKUNOV Y, et al.. Blue light increases anthocyanin content and delays fruit ripening in purple pepper fruit[J/OL]. Postharvest Biol. Technol., 2022, 192: 112024[2024-06-09]. . |
81 | CHEN X, CAI W, XIA J, et al.. Metabolomic and transcriptomic analyses reveal that blue light promotes chlorogenic acid synthesis in strawberry[J]. J. Agric. Food Chem., 2020, 68(44): 12485-12492. |
82 | EBISAWA M, SHOJI K, KATO M, et al.. Supplementary ultraviolet radiation B together with blue light at night increased quercetin content and flavonol synthase gene expression in leaf lettuce (Lactuca sativa L.)[J]. Environ. Control Biol., 2008, 46(1): 1-11. |
83 | CUI Y, ZHU M, SONG J, et al.. Expression dynamics of phytochrome genes for the shade-avoidance response in densely direct-seeding rice[J/OL]. Front. Plant Sci., 2022, 13: 1105882[2024-06-09]. . |
84 | 姜敏, 李魏, 董铮, 等. 光敏色素对植物抗逆反应的调控研究进展[J]. 生物技术通报, 2017, 33(7): 15-21. |
JIANG M, LI W, DONG Z, et al.. Recent advances on the regulation of phytochrome in plant defense resistance[J]. Biotechnol. Bull., 2017, 33(7): 15-21. | |
85 | 杜玉芬. 红蓝白组合光对茄子幼苗生长与产量和品质的影响[D]. 泰安: 山东农业大学, 2019. |
86 | 陈冰星, 王晓倩, 刘涛, 等. 不同光质光周期对樱桃萝卜生长发育及营养品质的影响[J]. 西北植物学报, 2020, 40(1): 77-86. |
CHEN B X, WANG X Q, LIU T, et al.. Effect of different light quality and photoperiods on growth development and nutritional quality of cherry radish[J]. Acta Bot. Boreali Occidentalia Sin., 2020, 40(1): 77-86. | |
87 | LEE J S, LIM T G, KIM Y H. Growth and phytochemicals in lettuce as affected by different ratios of blue to red led radiation[J]. Acta Hortic., 2014, 1037: 843-848. |
88 | OWEN W G, LOPEZ R G. End-of-production supplemental lighting with red and blue light-emitting diodes (LEDs) influences red pigmentation of four lettuce varieties[J]. HortScience, 2015, 50(5): 676-684. |
89 | 赵燕. 光环境对蕹菜生长、产量及品质的影响[D]. 泰安: 山东农业大学, 2020. |
[1] | 徐畅, 刘天一, 刘文佳, 张俐敏, 莫继先. 微生物胞外多糖的来源、生物合成及功能研究进展[J]. 生物技术进展, 2024, 14(3): 368-376. |
[2] | 范一铭, 高桂珍, 薛羽君, 伍晓明. 植物神经酸研究进展[J]. 生物技术进展, 2022, 12(5): 664-672. |
[3] | 李彦娇, 高媛, 王磊, 张兰. 三烯生育酚研究进展[J]. 生物技术进展, 2021, 11(6): 668-675. |
[4] | 张融雪,孙玥,苏京平,王胜军,佟卉,刘燕清,孙林静. 植物褪黑素研究进展[J]. 生物技术进展, 2021, 11(3): 297-303. |
[5] | 姚兴兰,王磊,张兰. 植物维生素E生物强化研究进展[J]. 生物技术进展, 2020, 10(5): 479-486. |
[6] | 宫硖,薛静,张晓东. 植物花青素合成途径中的调控基因研究进展[J]. 生物技术进展, 2011, 1(6): 381-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部