生物技术进展 ›› 2021, Vol. 11 ›› Issue (4): 526-534.DOI: 10.19586/j.2095-2341.2021.0085
收稿日期:
2021-05-17
接受日期:
2021-06-21
出版日期:
2021-07-25
发布日期:
2021-08-02
通讯作者:
姜凌
作者简介:
孙卉 E-mail:sunhui@caas.cn;
基金资助:
Hui SUN(), Chunyi ZHANG, Ling JIANG(
)
Received:
2021-05-17
Accepted:
2021-06-21
Online:
2021-07-25
Published:
2021-08-02
Contact:
Ling JIANG
摘要:
辅酶Ⅰ——烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)是一种在糖酵解、糖异生、三羧酸循环及呼吸链中发挥重要作用的辅酶,广泛参与DNA修复、组蛋白去乙酰化等生命过程。近年来研究表明NAD+合成的前体和中间化合物(具有维生素B3活性的烟酸、烟酰胺、烟酰胺核苷和烟酰胺单核苷酸)在预防糙皮病、延缓衰老,治疗神经和心血管多种疾病、调节胰岛素分泌、调控mRNA的表达等方面具有重要疗效。着重介绍了辅酶Ⅰ体内的合成代谢以及参与的调节衰老进程,以期为利用合成生物学技术在大肠杆菌中富集NAD+中间化合物提供理论依据和技术支撑。
中图分类号:
孙卉, 张春义, 姜凌. 辅酶Ⅰ体内代谢调控研究进展[J]. 生物技术进展, 2021, 11(4): 526-534.
Hui SUN, Chunyi ZHANG, Ling JIANG. Research Progress on Regulation of Coenzyme Ⅰ Metabolism[J]. Current Biotechnology, 2021, 11(4): 526-534.
1 | HEGYI J, SCHWARTZ R A, HEGYI V. Pellagra: dermatitis, dementia, and diarrhea [J]. Int. J. Dermatol., 2004, 43(1):1-5. |
2 | HONG W, MO F, ZHANG Z, et al.. Nicotinamide mononucleotide: a promising molecule for therapy of diverse diseases by targeting NAD+ metabolism [J/OL]. Front. Cell Dev. Biol., 2020, 8:246[2021-06-25]. . |
3 | CANTÓ C, MENZIES K J, AUWERX J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus [J]. Cell Metab., 2015, 22(1):31-53. |
4 | ANDERSON K A, MADSEN A S, OLSEN C A, et al.. Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio [J]. Biochim. Biophys. Acta., 2017, 1858(12):991-998. |
5 | YAKU K, OKABE K, NAKAGA W A. NAD metabolism: implications in aging and longevity [J]. Age. Res. Rev., 2018,47:1-17. |
6 | KIRKLAND J B, MEYER-FICCA M. Niacin [J]. Adv. Food. Nutr. Res., 2018, 83:83-149. |
7 | BIEGANOWSKI P, BRENNER C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans [J]. Cell, 2004, 117:495-502. |
8 | YANG Y, SAUVE A A. NAD+ metabolism: bioenergetics, signaling and manipulation for therapy [J]. Biochim. Biophys. Acta., 2016, 1864:1787-1800. |
9 | BADAWY A A. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects [J]. Int. J. Tryptophan Res., 2017, 10:1-10. |
10 | FUKUWATARI T, SUGIMOTO E, SHIBATA K. Growth-promoting activity of pyrazinoic acid, a putative active compound of antituberculosis drug pyrazinamide, in niacin-deficient rats through the inhibition of ACMSD activity [J]. Biosci. Biotechnol. Biochem., 2002, 66(7):1435-1441. |
11 | FELDBLUM S, ROUGIER A, LOISEAU H, et al.. Quinolinic-phosphoribosyl transferase activity is decreased in epileptic human brain tissue [J]. Epilepsia, 1988, 29(5):523-529. |
12 | PREISS J, HANDLER P. Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates [J]. J. Biol. Chem., 1958, 233:488-492. |
13 | CONFORTI L, JANECKOVA L, WAGNER D, et al.. Reducing expression of NAD+ synthesizing enzyme NMNAT1 does not affect the rate of Wallerian degeneration [J]. FEBS. J., 2011, 278:2666-2679. |
14 | GILLEY J, ADALBERT R, YU G, et al.. Rescue of peripheral and CNS axon defects in mice lacking NMNAT2 [J]. J. Neurosci., 2013, 33:13410-13424. |
15 | VANLINDEN M R, DOLLE C, PETTERSEN I K, et al.. Subcellular distribution of NAD+ between cytosol and mitochondria determines the metabolic profile of human cells [J]. J. Biol. Chem., 2015, 290:27644-27659. |
16 | BERGER F, LAU C, DAHLMANN M, et al.. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms [J]. J. Biol. Chem., 2005, 280:36334-36341. |
17 | GROZIO A, MILLS K F, YOSHINO J, et al.. Slc12a8 is a nicotinamide mononucleotide transporter [J]. Nat. Metab., 2019, 1:47-57. |
18 | NAKAHATA Y, SAHAR S, ASTARITA G, et al.. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1 [J]. Science, 2009, 324:654-657. |
19 | REVOLLO J R, KORNER A, MILLS K F, et al.. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme [J]. Cell. Metab., 2007, 6:363-375. |
20 | YOON M J, YOSHIDA M, JOHNSON S, et al.. SIRT1-Mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice [J]. Cell Metab., 2015, 21:706-717. |
21 | WANG B, HASAN M K, ALVARADO E, et al.. NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response [J]. Oncogene, 2011, 30:907-921. |
22 | FANG E F, KASSAHUN H, CROTEAU D L, et al.. NAD+ replenishment improves lifespan and healthspan in Ataxia telangiectasia models via mitophagy and DNA repair [J]. Cell. Metab., 2016, 24:566-581. |
23 | KLIMOVA N, FEARNOW A, LONG A, et al.. NAD+ precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms [J/OL]. Exp. Neurol., 2020, 325:113144[2021-06-25]. . |
24 | WAKADE C, CHONG R, BRADLEY E, et al.. Low-dose niacin supplementation modulates GPR109A, niacin index and ameliorates Parkinson's disease symptoms without side effects [J]. Clin. Case. Rep., 2015, 3(7):635-637. |
25 | ZHAO C, LI W, DUAN H, et al.. NAD+ precursors protect corneal endothelial cells from UVB-induced apoptosis [J]. Am. J. Physiol. Cell Physiol., 2020, 318:C796-C805. |
26 | YAMAMOTO T, BYUN J, ZHAI P, et al.. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion [J/OL]. PLoS ONE, 2014, 9:e98972[2021-06-25]. . |
27 | DE PICCIOTTO N E, GANO L B, JOHNSON L C, et al.. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice [J]. Aging Cell, 2016,15:522-530. |
28 | ASSIRI M A, ALI H R, MARENTETTE J O, et al.. Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease [J/OL]. Hum. Genomics, 2019, 13:65[2021-06-25]. . |
29 | MORIGI M, PERICO L, ROTA C, et al.. Sirtuin3-dependent mitochondrial dynamic improvements protect against acute kidney injury [J]. J. Clin. Invest., 2015,125:715-726. |
30 | CHEN Y, LIANG Y, HU T, et al.. Endogenous Nampt upregulation is associated with diabetic nephropathy inflammatory-fibrosis through the NF-κBp65 and Sirt1 pathway; NMN alleviates diabetic nephropathy inflammatory-fibrosis by inhibiting endogenous Nampt [J]. Exp. Ther. Med., 2017,14:4181-4193. |
31 | CHOI S E, FU T, SEOK S, et al.. Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT[J]. Aging Cell, 2013,12:1062-1072. |
32 | BENAVENTE C A, SCHNELL S A, JACOBSON E L. Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin [J/OL]. PLoS ONE, 2012, 7(7):e4227[2021-06-25]. . |
33 | FREDERICK D W, LORO E, LIU L, et al.. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle [J]. Cell Metab., 2016, 24:269-282. |
34 | IMAI S, GUARENTE L. It takes two to tango: NAD+ and sirtuins in aging/longevity control [J/OL]. NPJ Aging Mech. Dis., 2016, 2(1):16017[2021-06-25]. . |
35 | CAMACHO-PEREIRA J, TARRAGO M G, CHINI C C S, et al.. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism [J]. Cell Metab., 2016, 23:1127-1139. |
36 | MASSUDI H, GRANT R, BRAIDY N, et al.. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue [J/OL]. PLoS ONE, 2012, 7(7):e42357[2021-06-25]. . |
37 | KIM M Y, ZHANG T, KRAUS W L. Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal [J]. Genes Dev., 2005, 19:1951-1967. |
38 | PALAZZO L, MIKOČ A, AHEL I. ADP-ribosylation: New facets of an ancient modification [J]. FEBS J., 2017, 284:2932-2946. |
39 | MALAVASI F, DEAGLIO S, FUNARO A, et al.. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology [J]. Physiol. Rev., 2008, 88:841-886. |
40 | ESCANDE C, NIN V, PRICE N L, et al.. Flavonoid apigenin is an inhibitor of the NAD+ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome [J]. Diabetes, 2013, 62(4):1084-1093. |
41 | PEEK C B, AFFINATI A H, RAMSEY K M, et al.. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice [J/OL]. Science, 2013, 342(6158):1243417[2021-06-25]. . |
42 | YAMADA Y, ARAI T, SUGAWARA S, et al.. Impact of novel oncogenic pathways regulated by antitumor miR-451a in renal cell carcinoma [J]. Cancer Sci., 2018, 109:1239-1253. |
43 | MICHAN S, SINCLAIR D. Sirtuins in mammals: Insights into their biological function [J]. Biochem. J., 2007, 404(1):1-13. |
44 | GOLDIE C, TAYLOR A J, NGUYEN P, et al.. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomized controlled trials [J]. Heart, 2015, 102:198-203. |
45 | RAJMAN L, CHWALEK K, SINCLAIR D A. Therapeutic potential of NAD-Boosting molecules: the in vivo evidence [J]. Cell Metab., 2018, 27:529-547. |
46 | WANG G, HAN T, NIJHAWAN D, et al.. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage [J]. Cell, 2014, 158:1324-1334. |
47 | SHOJI S, YAMAJI T, MAKINO H, et al.. Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide[J]. Metab. Eng., 2021, 65:167-177. |
48 | DING Y, LI X, HORSMAN G P, et al.. Construction of an alternative NAD+ de novo biosynthesis pathway[J/OL]. Adv. Sci., 2021, 8(9):2004632[2021-06-25]. . |
[1] | 曹丹, 马林龙, 刘艳丽, 王丽丽, 金孝芳. 植物营养元素胁迫相关microRNA研究进展[J]. 生物技术进展, 2022, 12(6): 801-805. |
[2] | 杜开颜, 祁晨旭, 曹静钰, 陈蒙, 高静, 刘承梅. 铁死亡参与脊髓损伤调控的研究进展[J]. 生物技术进展, 2022, 12(6): 869-874. |
[3] | 吴一凡, 林晟豪, 许文涛. 小分子靶标的核糖开关生物传感器研究进展[J]. 生物技术进展, 2022, 12(2): 168-175. |
[4] | 王欣, 张天柱. 园艺作物花青素合成调控研究进展[J]. 生物技术进展, 2022, 12(1): 10-16. |
[5] | 王婉洁, 陈南珠, 郝海生, 赵学明, 朱化彬, 杜卫华. 组蛋白甲基转移酶ASH2的研究进展[J]. 生物技术进展, 2022, 12(1): 27-35. |
[6] | 张卡, 王泳浩, 吴云峰, 许雷, 王海胜. 苜蓿中华根瘤菌氮代谢调控相关非编码RNA的研究[J]. 生物技术进展, 2022, 12(1): 90-98. |
[7] | 孙卉,张春义,姜凌. 马铃薯维生素代谢研究应用进展[J]. 生物技术进展, 2020, 10(4): 351-357. |
[8] | 邢利娟,刘悦萍,王磊,徐妙云. miRNA参与植物胚和胚乳发育调控的研究进展[J]. 生物技术进展, 2020, 10(2): 109-116. |
[9] | 黄春蒙,,朱鹏宇,王智,王晨光,杜智欣,魏霜4,张永江,付伟. 基于RNAi技术的转基因植物监管现状及其面临的育种领域的挑战[J]. 生物技术进展, 2020, 10(1): 10-14. |
[10] | 张在宝,,赵海,胡梦辉,邓丽君,王琦,李九丽,袁红雨,. 组学在花药发育研究中的应用进展Ⅰ:转录组学[J]. 生物技术进展, 2019, 9(5): 433-439. |
[11] | 林晶晶,杨宇丰. 线粒体自噬的调控机制及其在相关疾病中的作用[J]. 生物技术进展, 2019, 9(5): 467-475. |
[12] | 丁珊,任禹静,姜凌,梅子青. 磷酸化对UCHL3体外去泛素化酶活性的影响[J]. 生物技术进展, 2019, 9(5): 527-535. |
[13] | 闫东科,吕平. 低氧诱导因子及其抑制剂研究进展[J]. 生物技术进展, 2019, 9(4): 332-340. |
[14] | 褚蔚,刘洋洋,李永波,楚秀生. 植物3-羟基-3-甲基戊二酰辅酶A还原酶基因研究进展[J]. 生物技术进展, 2018, 8(2): 93-102. |
[15] | 秦海波,朱建明. 中国典型高硒区硒的环境地球化学研究进展[J]. 生物技术进展, 2017, 7(5): 367-373. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部