1 |
中华医学会骨科学分会关节外科学组.骨关节炎诊疗指南(2018年版)[J].中华骨科杂志,2018,38(12):705-715.
|
2 |
HUNTER D J, BIERMA-ZEINSTRA S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
|
3 |
ROBINSON W H, LEPUS C M, WANG Q, et al.. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis [J]. Nat. Rev. Rheumatol., 2016, 12(10): 580-592.
|
4 |
JANELLE-MONTCALM A, BOILEAU C, POIRIER F, et al.. Extracellular localization of galectin-3 has a deleterious role in joint tissues[J]. Arthritis Res. Ther., 2007, 9(1): R20-R28.
|
5 |
LOESER R F, COLLINS J A, DIEKMAN B O. Ageing and the pathogenesis of osteoarthritis [J]. Nat. Rev. Rheumatol., 2016, 12(7): 412-420.
|
6 |
HÜGLE T, GEURTS J. What drives osteoarthritis?-synovial versus subchondral bone pathology[J]. Rheumatology, 2017, 56(9): 1461-1471.
|
7 |
HUSSAIN S M, DAWSON C, WANG Y, et al.. Vascular pathology and osteoarthritis: A systematic review[J]. J. Rheumatol., 2020, 47(5): 748-760.
|
8 |
ALTMAN R, ASCH E, BLOCH D, et al.. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association[J]. Arthritis. Rheum.., 1986, 29(8): 1039-1049.
|
9 |
ABED E, BOUVARD B, MARTINEAU X, et al.. Elevated hepatocyte growth factor levels in osteoarthritis osteoblasts contribute to their altered response to bone morphogenetic protein-2 and reduced mineralization capacity[J]. Bone, 2015, 75: 111-119.
|
10 |
HU Y, LIU Y, LAJEUNESSE D, et al.. Identification of two populations of osteoarthritic osteoblasts according to the 1,25[OH]2 vitamin D3 potency to stimulate osteocalcin[J]. Biomed. Mater. Eng., 2015, 25(1): 103-110.
|
11 |
BURR D B, GALLANT M A. Bone remodelling in osteoarthritis [J]. Nat. Rev. Rheumatol., 2012, 8(11): 665-673.
|
12 |
IACOBINI C, FANTAUZZI C B, PUGLIESE G, et al.. Role of galectin-3 in bone cell differentiation, bone pathophysiology and vascular osteogenesis[J]. Int. J. Mol. Sci., 2017, 18(11): 2481-2501.
|
13 |
SIMON D, DERER A, ANDES F T, et al.. Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis [J]. Bone, 2017, 105: 35-41.
|
14 |
IACOBINI C, BLASETTI FANTAUZZI C, BEDINI R, et al.. Galectin-3 is essential for proper bone cell differentiation and activity, bone remodeling and biomechanical competence in mice[J]. Metabolism, 2018, 83: 149-158.
|
15 |
ALLISTON T, HERNANDEZ C J, FINDLAY D M, et al.. Bone marrow lesions in osteoarthritis: what lies beneath [J]. J. Orthop. Res., 2018, 36(7): 1818-1825.
|
16 |
TATEIWA D, YOSHIKAWA H, KAITO T. Cartilage and bone destruction in arthritis: pathogenesis and treatment strategy: a literature review[J]. Cells, 2019, 8(8): 818-849.
|
17 |
ZOCH M L, CLEMENS T L, RIDDLE R C. New insights into the biology of osteocalcin [J]. Bone, 2016, 82: 42-49.
|
18 |
MARUOTTI N, CORRADO A, CANTATORE F P. Osteoblast role in osteoarthritis pathogenesis [J]. J. Cell Physiol., 2017, 232(11): 2957-2963.
|
19 |
CHANG J, JACKSON S G, WARDALE J, et al.. Hypoxia modulates the phenotype of osteoblasts isolated from knee osteoarthritis patients, leading to undermineralized bone nodule formation[J]. Arthritis Rheumatol., 2014, 66(7): 1789-1799.
|
20 |
AULD K L, BERASI S P, LIU Y, et al.. Estrogen-related receptor alpha regulates osteoblast differentiation via Wnt/beta-catenin signaling[J]. J. Mol. Endocrinol., 2012, 48(2): 177-191.
|
21 |
CARNESECCHI J, VANACKER J M. Estrogen-related receptors and the control of bone cell fate[J]. Mol. Cell Endocrinol., 2016, 432: 37-43.
|
22 |
ZAINABADI K, LIU C J, CALDWELL A L M, et al.. SIRT1 is a positive regulator of in vivo bone mass and a therapeutic target for osteoporosis[J/OL]. PLoS ONE, 2017, 12(9): e0185236[2021-10-08]. .
|
23 |
ALMEIDA M, PORTER R M. Sirtuins and FoxOs in osteoporosis and osteoarthritis[J]. Bone, 2019, 121: 284-292.
|