1 |
HASHIMOTO K, ODA Y, NAKAMURA F, et al.. Lectin-like, oxidized low-density lipoprotein receptor-1-deficient mice show resistance to age-related knee osteoarthritis[J]. Eur. J. Histochem., 2017, 61(1): 2762[2021-09-30]. .
|
2 |
ISHIDOU Y, MATSUYAMA K, SAKUMA D, et al.. Osteoarthritis of the hip joint in elderly patients is most commonly atrophic, with low parameters of acetabular dysplasia and possible involvement of osteoporosis[J/OL]. Arch. Osteoporos., 2017, 12(1): 30[2021-09-30]. .
|
3 |
HUNTER D, BIERMA-ZEINSTRA S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
|
4 |
SILVERWOOD V, BLAGOJEVIC-BUCKNALL M, JINKS C, et al.. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis[J]. Osteoarth. Cartil., 2015, 23(4): 507-515.
|
5 |
CALDERS P, GINCKEL A VAN. Presence of comorbidities and prognosis of clinical symptoms in knee and/or hip osteoarthritis: a systematic review and meta-analysis[J]. Semin. Arthritis. Rheum., 2018, 47(6): 805-813.
|
6 |
DUAN R, XIE H, LIU Z Z. The role of autophagy in osteoarthritis[J/OL]. Front. Cell Dev.Biol. 2020, 8: 608388[2021-09-30]..
|
7 |
FERNANDES T L, GOMOLL A H, LATTERMANN C, et al.. Macrophage: a potential target on cartilage regeneration[J/OL]. Front. Immunol., 2020,11:111[2021-09-30]. .
|
8 |
HASEGAWA M, YOSHIDA T, SUDO A. Tenascin-C in osteoarthritis and rheumatoid arthritiss[J/OL]. Front. Immunol., 2020, 11: 577015[2021-09-30]. .
|
9 |
GKRETSI V, SIMOPOULOU T, TSEZOU A. Lipid metabolism and osteoarthritis: lessons from atherosclerosis[J]. Prog. Lipid Res., 2011, 50(2): 133-140.
|
10 |
LOPEZ H. Nutritional interventions to prevent and treat osteoarthritis. Part I: focus on fatty acids and macronutrients[J]. PM R., 2012, 4(5 S): 145-154.
|
11 |
SIBILLE K T, KING C, GARRETT T J, et al.. Omega-6: omega-3 PUFA ratio, pain, functioning, and distress in adults with knee pain[J]. Clin. J. Pain, 2018, 34(2): 182-189.
|
12 |
JUNG S, PETELSKA A, BELDOWSKI P, et al.. Hyaluronic acid and phospholipid interactions useful for repaired articular cartilage surfaces-a mini review toward tribological surgical adjuvants[J]. Colloid. Polym. Sci., 2017, 295(3): 403-412.
|
13 |
BAKER K R, MATTHAN N R, LICHTENSTEIN A H, et al.. Association of plasma n-6 and n-3 polyunsaturated fatty acids with synovitis in the knee: the MOST study[J]. Osteoarth. Cartil., 2012, 20(5): 382-387.
|
14 |
KNOTT L, AVERY N C, HOLLANDER A P, et al.. Regulation of osteoarthritis by omega-3 (n-3) polyunsaturated fatty acids in a naturally occurring model of disease[J]. Osteoarth. Cartil., 2011, 19(9): 1150-1057.
|
15 |
HUANG M J, WANG L, JIN D D, et al.. Enhancement of the synthesis of n-3 PUFAs in fat-1 transgenic mice inhibits mTORC1 signalling and delays surgically induced osteoarthritis in comparison with wild-type mice[J]. Ann. Rheum. Dis., 2014, 73(9): 1719-1727.
|
16 |
ADEYEMI W J, OLAYAKI L A. Additive and nonadditive effects of salmon calcitonin and omega-3 fatty acids on antioxidant, hematological and bone and cartilage markers in experimental diabetic-osteoarthritic rats[J]. Chin. J. Physiol., 2019, 62(3): 108-116.
|
17 |
TIKU M L, SHAH R, ALLISON G T. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis[J]. J. Biol. Chem., 2000, 275(26): 20069-20076.
|
18 |
MORQUETTE B, SHI Q, LAVIGNE P, et al.. Production of lipid peroxidation products in osteoarthritic tissues: new evidence linking 4-hydroxynonenal to cartilage degradation[J]. Arth. Rheum., 2006, 54(1): 271-281.
|
19 |
ROMAN-BLAS J A, CONTRERAS-BLASCO M A, LARGO R, et al.. Differential effects of the antioxidant n-acetylcysteine on the production of catabolic mediators in IL-1beta-stimulated human osteoarthritic synoviocytes and chondrocytes[J]. Eur. J. Pharmacol., 2009, 623(1-3): 125-131.
|
20 |
PETURSSON F, HUSA M, JUNE R, et al.. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes[J/OL]. Arth. Res. Ther., 2013, 15(4):R77[2021-09-30].https.//doi.org/10.1186/ar4254.
|
21 |
TERKELTAUB R, YANG B, LOTZ M, et al.. Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α[J]. Arth. Rheum., 2011, 63(7): 1928-1937.
|
22 |
WANG Y, ZHAO X, LOTZ M, et al.. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α[J]. Arth. Rheumatol., 2015, 67(8):2141-2153.
|
23 |
HASHIMOTO T, YOKOKAWA T, ENDO Y, et al.. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes[J]. Biochem. Biophys. Res. Commun., 2013, 440(1): 43-49.
|
24 |
SUMMERMATTER S, TROXLER H, SANTOS G, et al.. Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity[J]. Biochem. Biophys. Res. Commun., 2011, 408(1): 180-185.
|
25 |
BAO M, ZHANG K, WEI Y, et al.. Therapeutic potentials and modulatory mechanisms of fatty acids in bone[J/OL]. Cell Prolif, 2020, 53(2): e12735[2021-09-30]. .
|
26 |
HARDIE D G, ASHFORD M L. AMPK: regulating energy balance at the cellular and whole body levels[J]. Physiology (Bethesda), 2014, 29(2): 99-107.
|
27 |
CZAJA M J. Autophagy in health and disease. 2. Regulation of lipid metabolism and storage by autophagy: pathophysiological implications[J]. Am. J. Physiol. Cell Physiol., 2010, 298(5): C973-978
|
28 |
SINGH R, KAUSHIK S, WANG Y, et al.. Autophagy regulates lipid metabolism[J]. Nature, 2009, 458(7242): 1131-1135.
|
29 |
PODECHARD N, LE FERREC E, REBILLARD A, et al.. NPC1 repression contributes to lipid accumulation in human macrophages exposed to environmental aryl hydrocarbons[J]. Cardiov. Res., 2009, 82(2): 361-370.
|
30 |
LIZASO A, TAN K T, LEE Y H. β-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation[J]. Autophagy, 2013, 9(8): 1228-1243.
|
31 |
SCHROEDER B, SCHULZE R J, WELLER S G, et al.. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy[J]. Hepatology, 2015, 61(6): 1896-1907.
|
32 |
XU J, DANG Y, REN Y R, et al.. Cholesterol trafficking is required for mTOR activation in endothelial cells[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(10): 4764-4769.
|
33 |
FEIGE J N, GELMAN L, MICHALIK L, et al.. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions[J]. Prog. Lipid Res., 2006, 45(2): 120-59.
|
34 |
KIM J, LEE Y J, KIM J M, et al.. PPARgamma agonists induce adipocyte differentiation by modulating the expression of Lipin-1, which acts as a PPARgamma phosphatase[J]. Int. J. Biochem. Cell Biol., 2016, 81(Pt A): 57-66.
|
35 |
AKUNE T, OHBA S, KAMEKURA S, et al.. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors[J]. J. Clin. Invest., 2004, 113(6): 846-855.
|
36 |
KELLY O J, GILMAN J C, KIM Y, et al.. Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis[J]. Nutr. Res., 2013, 33(7):521-533.
|
37 |
LAVADO-GARCÍA J, RONCERO-MARTIN R, MORAN JM, et al. Long-chain omega-3 polyunsaturated fatty acid dietary intake is positively associated with bone mineral density in normal and osteopenic Spanish women[J/OL]. PLoS ONE, 2018, 13(1): e0190539[2021-09-30]. .
|
38 |
STANNUS O P, CAO Y, ANTONY B, et al.. Cross-sectional and longitudinal associations between circulating leptin and knee cartilage thickness in older adults[J]. Ann. Rheum. Dis., 2013, 74(1): 82-88..
|
39 |
SCHRAGENHEIM J, BELLNER L, CAO J, et al.. EET enhances renal function in obese mice resulting in restoration of HO-1-Mfn1/2 signaling, and decrease in hypertension through inhibition of sodium chloride co-transporter[J]. Prostag. Other Lipid Mediat., 2018, 137: 30-39.
|
40 |
GENTILI C, TUTOLO G, PIANEZZI A, et al.. Cholesterol secretion and homeostasis in chondrocytes: a liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein A1 expression[J]. Matrix. Biol., 2005, 24(1): 35-44.
|
41 |
TSEZOU A, ILIOPOULOS D, MALIZOS K N, et al.. Impaired expression of genes regulating cholesterol efflux in human osteoarthritic chondrocytes[J]. J. Orthop. Res., 2010, 28(8): 1033-1039.
|
42 |
ZHANG Y, CASTELLANI L W, SINAL C J, et al.. Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR[J]. Genes. Dev., 2004, 18(2): 157-169.
|
43 |
YANG Q, ZHOU Y, SUN Y, et al.. Will sirtuins be promising therapeutic targets for tbi and associated neurodegenerative diseases[J/OL]. Front. Neurosci., 2020, 14:7919[2021-09-30].https.//doi.org/10.3389
|
|
/fnins.2020.00791.
|
44 |
GIACCONI R, CHIODI L, BOCCOLI G, et al.. Reduced levels of plasma selenium are associated with increased inflammation and cardiovascular disease in an Italian elderly population[J/OL]. Exp. Gerontol., 2021, 145:111219[2021-09-30]. .
|
45 |
QU P, WANG L, MIN Y, et al.. Vav1 regulates mesenchymal stem cell differentiation decision between adipocyte and chondrocyte via sirt1[J]. Stem Cells, 2016, 34(7): 1934-1946.
|
46 |
RUDERMAN N B, XU X J, NELSON L, et al.. AMPK and SIRT1: a long-standing partnership[J]. Am. J. Physiol. Endocrinol. Metab., 2010, 298(4): 751-760.
|
47 |
SUN L J, LI S C, ZHAO Y H, et al.. Silent information regulator 1 inhibition induces lipid metabolism disorders of hepatocytes and enhances hepatitis C virus replication[J]. Hepatol. Res., 2013, 43(12): 1343-1351.
|
48 |
LI X, ZHANG S, BLANDER G, et al.. SIRT1 deacetylates and positively regulates the nuclear receptor LXR [J]. Mol. Cell, 2007, 28(1): 91-106.
|
49 |
GENTILI C, TUTOLO G, PIANEZZI A, et al.. Cholesterol secretion and homeostasis in chondrocytes: a liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein A1 expression [J]. Matrix. Biol., 2005, 24(1): 35-44.
|
50 |
LAVADO-GARCIA J, RONCERO-MARTIN R, MORAN J M, et al.. Long-chain omega-3 polyunsaturated fatty acid dietary intake is positively associated with bone mineral density in normal and osteopenic Spanish women[J/OL]. PLoS ONE, 2018, 13(1): e0190539[2021-09-30]. .
|
51 |
CANTÓ C, AUWERX J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure[J]. Curr. Opin. Lipidol., 2009, 20(2): 98-105.
|
52 |
HUANG H, WANG Z J, ZHANG H B, et al.. The function of PPARgamma/AMPK/SIRT-1 pathway in inflammatory response of human articular chondrocytes stimulated by advanced glycation end products [J]. Biol. Pharm. Bull., 2019, 42(8): 1303-1309.
|
53 |
WANG Y, ZHAO X, LOTZ M, et al.. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor gamma coactivator 1alpha [J]. Arthritis. Rheumatol., 2015, 67(8): 2141-2153.
|
54 |
MA C H, CHIUA Y C, WU C H, et al.. Homocysteine causes dysfunction of chondrocytes and oxidative stress through repression of SIRT1/AMPK pathway: A possible link between hyperhomocysteinemia and osteoarthritis[J]. Redox. Biol., 2018, 15: 504-512.
|
55 |
ZHU X, CHEN F, LU K, et al.. PPARγ preservation via promoter demethylation alleviates osteoarthritis in mice[J]. Ann. Rheum. Dis., 2019, 78(10): 1420-1429.
|