生物技术进展 ›› 2021, Vol. 11 ›› Issue (5): 653-659.DOI: 10.19586/j.2095-2341.2021.0113
• 赤霉病防控 • 上一篇
孙政玺(), 胡思嘉, 周益雷, 胡怡, 江宁, 李磊, 李韬(
)
收稿日期:
2021-06-15
接受日期:
2021-07-15
出版日期:
2021-09-25
发布日期:
2021-10-08
通讯作者:
李韬
作者简介:
孙政玺 E-mail:007179@yzu.edu.cn;
基金资助:
Zhengxi SUN(), Sijia HU, Yilei ZHOU, Yi HU, Ning JIANG, Lei LI, Tao LI(
)
Received:
2021-06-15
Accepted:
2021-07-15
Online:
2021-09-25
Published:
2021-10-08
Contact:
Tao LI
摘要:
赤霉病是小麦中最难攻克的真菌性病害之一,不仅能够引起小麦减产,而且会造成DON毒素污染,目前小麦赤霉病的防控仍面临瓶颈。近年来,植物小分子非编码RNA(small noncoding RNA, sRNA)在植物抗病中的作用引起了广泛的关注。sRNA以其分子量小、可移动、靶向更精准等特点,理论上可以作为生物防治赤霉病制剂的主要成分。阐述了sRNA在植物抗病中的研究进展以及利用sRNA特异、高效防治赤霉病的可行性,以期为赤霉病的防治提供新策略。
中图分类号:
孙政玺, 胡思嘉, 周益雷, 胡怡, 江宁, 李磊, 李韬. sRNA的研究概述及其在小麦赤霉病防治中的应用展望[J]. 生物技术进展, 2021, 11(5): 653-659.
Zhengxi SUN, Sijia HU, Yilei ZHOU, Yi HU, Ning JIANG, Lei LI, Tao LI. Overview of Small RNAs and Their Potential Application in Protection of Wheat Against Fusarium Head Blight[J]. Current Biotechnology, 2021, 11(5): 653-659.
1 | SONG X, LI Y, CAO X, et al.. MicroRNAs and their regulatory roles in plant-environment interactions [J]. Annu. Rev. Plant Biol., 2019, 70:489-525. |
2 | SUN X, LIN L, SUI N. Regulation mechanism of microRNA in plant response to abiotic stress and breeding [J]. Mol. Biol. Rep., 2019, 46:1447-1457. |
3 | LIU H, YU H, TANG G, et al.. Small but powerful: function of microRNAs in plant development [J]. Plant Cell Rep., 2018, 37(3):515-528. |
4 | YU Y, JIA T, CHEN X. The 'how' and 'where' of plant microRNAs [J]. New Phytol., 2017, 216(4):1002-1017. |
5 | BRODERSEN P, SAKVARELIDZE-ACHARD L, BRUUN-RASMUSSEN M, et al.. Widespread translational inhibition by plant miRNAs and siRNAs [J]. Science, 2008, 320(5880):1185-1190. |
6 | DALMAY T, HAMILTON A, RUDD S, et al.. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus [J]. Cell, 2000, 101(5):543-553. |
7 | YOSHIKAWA M, PERAGINE A, PARK M Y, et al.. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis [J]. Gene Dev., 2005, 19:2164-2175. |
8 | KATIYAR-AGARWAL S, MORGAN R, DAHLBECK D, et al.. A pathogen-inducible endogenous siRNA in plant immunity [J/OL]. Proc. Natl. Acad. Sci. USA, 2006, 103(47):18002[2021-08-06]. . |
9 | MATZKE M A, BIRCHLER J A. RNAi-mediated pathways in the nucleus [J]. Nat. Rev. Genet., 2005, 6:24-35. |
10 | MATZKE M, KANNO T, DAXINGER L, et al.. RNA-mediated chromatin-based silencing in plants [J]. Curr. Opin. Cell Biol., 2009, 21(3):367-376. |
11 | PIKAARD C S, HAAG J R, REAM T, et al.. Roles of RNA polymerase IV in gene silencing [J]. Trends Plant Sci., 2008, 13(7):390-397. |
12 | KATIYAR-AGARWAL S, GAO S, VIVIAN-SMITH A, et al.. A novel class of bacteria-induced small RNAs in Arabidopsis [J]. Genes Dev., 2007, 21:3123-3134. |
13 | DELERIS A, GALLEGO-BARTOLOME J, BAO J, et al.. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense [J]. Science, 2006, 313(5783):68-71. |
14 | WU H, LI B, IWAKAWA H O, et al.. Plant 22-nt siRNAs mediate translational repression and stress adaptation [J]. Nature, 2020, 581(7806):89-93. |
15 | HENDERSON I R, ZHANG X, LU C, et al.. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning [J]. Nat. Genet., 2006, 38:721-725. |
16 | MA X, LIU C, KONG X, et al.. Extensive profiling of the expressions of tRNAs and tRNA-derived fragments (tRFs) reveals the complexities of tRNA and tRF populations in plants [J]. Sci. China Life Sci., 2021, 64(4):495-511. |
17 | LI S, XU Z, SHENG J. tRNA-derived small RNA: A novel regulatory small non-coding RNA [J/OL]. Genes, 2018, 9(5):246[2021-08-06]. . |
18 | YAMASAKI S, IVANOV P, HU G F, et al.. Angiogenin cleaves tRNA and promotes stress-induced translational repression [J]. J. Cell Biol., 2009, 185(1):35-42. |
19 | THOMPSON D M, PARKER R. Stressing out over tRNA cleavage [J]. Cell, 2009, 138(2):215-219. |
20 | ANDERSEN K L, COLLINS K. Several RNase T2 enzymes function in induced tRNA and rRNA turnover in the ciliate Tetrahymena [J]. Mol. Biol. Cell, 2012, 23(1):36-44. |
21 | KUMAR P, ANAYA J, MUDUNURI S B, et al.. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets [J/OL]. BMC Biol., 2014, 12:78[2021-08-06]. . |
22 | LI Z, ENDER C, MEISTER G, et al.. Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs [J]. Nucl. Acids Res., 2012, 40(14):6787-6799. |
23 | MARTINEZ G, CHOUDURY S G, SLOTKIN R K. tRNA-derived small RNAs target transposable element transcripts [J]. Nucl. Acids Res., 2017, 45(9):5142-5152. |
24 | MEGEL C, HUMMEL G, LALANDE S, et al.. Plant RNases T2, but not dicer-like proteins, are major players of tRNA-derived fragments biogenesis [J]. Nucl. Acids Res., 2019, 47(2):941-952. |
25 | MAUTE R L, SCHNEIDER C, SUMAZIN P, et al.. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(4):1404-1409. |
26 | KAWAMURA Y, SAITO K, KIN T, et al.. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells [J]. Nature, 2008, 453(7196):793-797. |
27 | LEE Y S, SHIBATA Y, MALHOTRA A, et al.. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs) [J]. Genes Dev., 2009, 23(22):2639-2649. |
28 | CHEN Q, YAN M, CAO Z, et al.. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder [J]. Science, 2016, 351(6271):397-400. |
29 | VENEZIANO D, TOMASELLO L, BALATTI V, et al.. Dysregulation of different classes of tRNA fragments in chronic lymphocytic leukemia [J]. Proc. Natl. Acad. Sci. USA, 2019, 116(48):24252-24258. |
30 | GOODARZI H, LIU X, NGUYEN H C, et al.. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement [J]. Cell, 2015, 161(4):790-802. |
31 | ALVES C S, VICENTINI R, DUARTE G T, et al.. Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants [J]. Plant Mol. Biol., 2017, 93:35-48. |
32 | GUPTA N, SINGH A, ZAHRA S, et al.. PtRFdb: a database for plant transfer RNA-derived fragments [J/OL]. Database, 2018:bay063[2021-08-06]. . |
33 | REN B, WANG X, DUAN J, et al.. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation [J]. Science, 2019, 365(6456):919-922. |
34 | TANG D, WANG G, ZHOU J M. Receptor kinases in plant-pathogen interactions: more than pattern recognition [J]. Plant Cell, 2017, 29(4):618-637. |
35 | HUANG G, ALLEN R, DAVIS E L, et al.. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene [J]. Proc. Natl. Acad. Sci. USA, 2006, 103(39):14302-14306. |
36 | MOLNAR A, MELNYK C W, BASSETT A, et al.. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells [J]. Science, 2010, 328(5980):872-875. |
37 | NAVARRO L, DUNOYER P, JAY F, et al.. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling [J]. Science, 2006, 312(5772):436-439. |
38 | NIU D, LII Y E, CHELLAPPAN P, et al.. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection [J/OL]. Nat. Commun., 2016, 7:11324[2021-08-06]. . |
39 | BOCCARA M, SARAZIN A, THIEBEAULD O, et al.. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes [J/OL]. PLoS Pathog., 2014, 10(1):e1003883[2021-08-06]. . |
40 | SHIVAPRASAD P V, CHEN H M, PATEL K, et al.. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs [J]. Plant Cell, 2012, 24(3):859-874. |
41 | LI F, PIGNATTA D, BENDIX C, et al.. MicroRNA regulation of plant innate immune receptors [J]. Proc. Natl. Acad. Sci. USA, 2012, 109(5):1790-1795. |
42 | LI Y, LU Y G, SHI Y, et al.. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae [J]. Plant Physiol., 2014, 164(2):1077-1092. |
43 | ZHU Q H, FAN L, LIU Y, et al.. miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton [J/OL]. PLoS ONE, 2013, 8(12):e84390[2021-08-06]. . |
44 | LIU M, SHI Z, ZHANG X, et al.. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice [J]. Nat. Plants, 2019, 5(4):389-400. |
45 | GUPTA O P, PERMAR V, KOUNDAL V, et al.. MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection [J]. Mol. Biol. Rep., 2012, 39:817-824. |
46 | MUETH N A, RAMACHANDRAN S R, HULBERT S H. Small RNAs from the wheat stripe rust fungus (Puccinia striiformis f.sp. tritici) [J/OL]. BMC Genomics, 2015, 16:718[2021-08-06]. . |
47 | ZHANG T, ZHAO Y L, ZHAO J H, et al.. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen [J/OL]. Nat. Plants, 2016, 2:16153[2021-08-06]. . |
48 | WATERHOUSE P M, FUSARO A F. Plant science. Viruses face a double defense by plant small RNAs [J]. Science, 2006, 313(5783):54-55. |
49 | NOWARA D, GAY A, LACOMME C, et al.. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis [J]. Plant Cell, 2010, 22(9):3130-3141. |
50 | LANGE M, YELLINA A L, ORASHAKOVA S, et al.. Virus-induced gene silencing (VIGS) in plants: an overview of target species and the virus-derived vector systems [J]. Methods Mol. Biol., 2013, 975:1-14. |
51 | WANG B, SUN Y, SONG N, et al.. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene [J]. New Phytol., 2017, 215(1):338-350. |
52 | WEIBERG A, WANG M, LIN F M, et al.. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways [J]. Science, 2013, 342(6154):118-123. |
53 | DUNKER F, TRUTZENBERG A, ROTHENPIELER J S, et al.. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence [J/OL]. Elife, 2020, 9:e56096[2021-08-06]. . DOI: 10.7554/ELIFE.56096. |
54 | YAO Y, GUO G, NI Z, et al.. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.) [J/OL]. Genome Biol., 2007, 8:R96[2021-08-06]. . |
55 | SU C, YANG X, GAO S, et al.. Identification and characterization of a subset of microRNAs in wheat (Triticum aestivum L.) [J]. Genomics, 2014, 103(4):298-307. |
56 | LIU J, CHENG X, LIU P, et al.. miR156-targeted SBP-box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat [J]. Plant Physiol., 2017, 174(3):1931-1948. |
57 | SU Z, BERNARDO A, TIAN B, et al.. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat [J]. Nat. Genet., 2019, 51(7):1099-1105. |
58 | WANG H, SUN S, GE W, et al.. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat [J/OL]. Science, 2020, 368(6493):eaba5435[2021-08-06]. . DOI: 10.1126/science.aba5435. |
59 | LI G, ZHOU J, JIA H, et al.. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight [J]. Nat. Genet., 2019,51(7):1106-1112. |
60 | RAWAT N, PUMPHREY M O, LIU S, et al.. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight [J]. Nat. Genet., 2016, 48:1576-1580. |
61 | JIN X, JIA L, WANG Y, et al.. Identification of Fusarium graminearum-responsive miRNAs and their targets in wheat by sRNA sequencing and degradome analysis [J]. Funct. Integr. Genomics, 2019,20(1):51-61. |
62 | JIAO J, PENG D. Wheat microRNA1023 suppresses invasion of Fusarium graminearum via targeting and silencing FGSG_03101 [J]. J. Plant Interact., 2018, 13:514-521. |
63 | JIAO J, XU L. One Small RNA of Fusarium graminearum targets and silences CEBiP Gene in common wheat [J/OL]. Microorganisms, 2019, 7(10):425[2021-08-06]. . |
64 | WERNER B T, GAFFAR F Y, SCHUEMANN J, et al.. RNA-spray-mediated silencing of Fusarium graminearum AGO and DCL genes improve barley disease resistance [J/OL]. Front. Plant Sci., 2020, 11:476[2021-08-06]. . |
65 | KOCH A, BIEDENKOPF D, FURCH A, et al.. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery [J/OL]. PLoS Pathog., 2016, 12:e1005901[2021-08-06]. . |
66 | COUZIGOU J M, ANDRE O, GUILLOTIN B, et al.. Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean [J]. New Phytol., 2016, 211(2):379-381. |
[1] | 曹丹, 马林龙, 刘艳丽, 王丽丽, 金孝芳. 植物营养元素胁迫相关microRNA研究进展[J]. 生物技术进展, 2022, 12(6): 801-805. |
[2] | 王仪威, 冯祎高, 刘润然, 卢春甜, 曹爱忠, 张瑞奇. 小麦-鹅观草第一部分同源群染色体渗入系鉴定与基因组归属分析[J]. 生物技术进展, 2021, 11(5): 567-573. |
[3] | 李东翱, 刘慧泉, 王秦虎. 小麦响应禾谷镰刀菌侵染的转录组学研究进展[J]. 生物技术进展, 2021, 11(5): 610-617. |
[4] | 段凯莉, 江聪, 王光辉. 禾谷镰刀菌蛋白激酶研究进展[J]. 生物技术进展, 2021, 11(5): 618-627. |
[5] | 李兵, 梁晋刚, 朱育攀, 王御琦, 焦浈. 我国小麦赤霉病成灾原因分析及防控策略探讨[J]. 生物技术进展, 2021, 11(5): 647-652. |
[6] | 吴迪,,郑彤,李磊,李韬. 小麦全基因组抗赤霉病QTL关联位点特异性SSR标记的筛选、等位变异及效应解析[J]. 生物技术进展, 2020, 10(3): 242-250. |
[7] | 邢利娟,刘悦萍,王磊,徐妙云. miRNA参与植物胚和胚乳发育调控的研究进展[J]. 生物技术进展, 2020, 10(2): 109-116. |
[8] | 黄春蒙,,朱鹏宇,王智,王晨光,杜智欣,魏霜4,张永江,付伟. 基于RNAi技术的转基因植物研究进展[J]. 生物技术进展, 2020, 10(1): 1-9. |
[9] | 何炫程,吕鹤书,黄捷飞,马兰青,杨明峰. 植物miRNA靶基因验证研究进展[J]. 生物技术进展, 2017, 7(2): 102-105. |
[10] | 侯旭,张国庆,胡晓,闫立春,刘悦萍. 果树内生生防菌研究进展[J]. 生物技术进展, 2017, 7(2): 149-154. |
[11] | 代京莎,李安章,朱红惠. 粘细菌在植物病害生物防治中的作用[J]. 生物技术进展, 2016, 6(4): 229-234. |
[12] | 李梦娇,彭晟,徐绍忠,余代宏,赵明富,文国松 . 克雷伯氏菌在农业与环境治理上的应用[J]. 生物技术进展, 2014, 4(6): 415-420. |
[13] | 王静,郑永华. 拮抗菌在果蔬采后病害生物防治中的应用[J]. 生物技术进展, 2013, 3(6): 393-398. |
[14] | 马桂美,车建美,刘波,史怀,陈峥. 短短芽胞杆菌功能基因的研究及其应用[J]. 生物技术进展, 2012, 2(2): 92-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部