生物技术进展 ›› 2025, Vol. 15 ›› Issue (4): 627-635.DOI: 10.19586/j.2095-2341.2025.0007
• 进展评述 • 上一篇
高佩娴(), 韩雪奇, 赵瑾宜, 赵鹏翔, 郑百卉, 刘梦昱(
)
收稿日期:
2025-01-20
接受日期:
2025-03-10
出版日期:
2025-07-25
发布日期:
2025-09-08
通讯作者:
刘梦昱
作者简介:
高佩娴 E-mail: gaopeixian0104@163.com;
基金资助:
Peixian GAO(), Xueqi HAN, Jinyi ZHAO, Pengxiang ZHAO, Baihui ZHENG, Mengyu LIU(
)
Received:
2025-01-20
Accepted:
2025-03-10
Online:
2025-07-25
Published:
2025-09-08
Contact:
Mengyu LIU
摘要:
骨骼肌稳态对于肌肉健康至关重要,其失调会导致骨骼肌萎缩并降低生活质量,现已成为公认的全球健康问题。研究表明,线粒体在维持骨骼肌稳态与健康中发挥重要作用,其功能障碍可导致骨骼肌萎缩,然而其发生分子机制较为复杂,目前尚未完全阐明,阻碍了骨骼肌萎缩治疗药物的开发。综述归纳了线粒体维持肌肉稳态涉及的分子机制,阐述了线粒体生物发生、线粒体动力学以及线粒体自噬等过程在骨骼肌健康中的关键作用,讨论了线粒体功能障碍对骨骼肌结构与功能的影响,总结了靶向调节线粒体功能治疗骨骼肌萎缩的方法,以期为后续研发治疗骨骼肌萎缩的线粒体靶向药物提供理论基础和启发。
中图分类号:
高佩娴, 韩雪奇, 赵瑾宜, 赵鹏翔, 郑百卉, 刘梦昱. 线粒体维持骨骼肌稳态研究进展[J]. 生物技术进展, 2025, 15(4): 627-635.
Peixian GAO, Xueqi HAN, Jinyi ZHAO, Pengxiang ZHAO, Baihui ZHENG, Mengyu LIU. Research Progress on Mitochondria Maintaining Skeletal Muscle Homeostasis[J]. Current Biotechnology, 2025, 15(4): 627-635.
[1] | SARTORI R, ROMANELLO V, SANDRI M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease[J/OL]. Nat. Commun., 2021, 12(1): 330[2025-02-27]. . |
[2] | LEDUC-GAUDET J P, HUSSAIN S N A, BARREIRO E, et al.. Mitochondrial dynamics and mitophagy in skeletal muscle health and aging[J/OL]. Int. J. Mol. Sci., 2021, 22(15): 8179[2025-02-27]. . |
[3] | YAN Y, LI M, LIN J, et al.. Adenosine monophosphate activated protein kinase contributes to skeletal muscle health through the control of mitochondrial function[J/OL]. Front. Pharmacol., 2022, 13: 947387[2025-02-27]. . |
[4] | JAVADOV S, KOZLOV A V, CAMARA A K S. Mitochondria in health and diseases[J/OL]. Cells, 2020, 9(5): 1177[2025-02-27]. . |
[5] | SAKELLARIOU G K, PEARSON T, LIGHTFOOT A P, et al.. Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy[J/OL]. Sci. Rep., 2016, 6: 33944[2025-02-27]. . |
[6] | ROMANELLO V, SANDRI M. The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass[J]. Cell. Mol. Life Sci., 2021, 78(4): 1305-1328. |
[7] | MATSUMOTO C, SEKINE H, NAHATA M, et al.. Role of mitochondrial dysfunction in the pathogenesis of cisplatin-induced myotube atrophy[J]. Biol. Pharm. Bull., 2022, 45(6): 780-792. |
[8] | MEMME J M, OLIVEIRA A N, HOOD D A. P53 regulates skeletal muscle mitophagy and mitochondrial quality control following denervation-induced muscle disuse[J/OL]. J. Biol. Chem., 2022, 298(2): 101540[2025-02-27]. . |
[9] | ANDREUX P A, VAN DIEMEN M P J, HEEZEN M R, et al.. Publisher correction: mitochondrial function is impaired in the skeletal muscle of pre-frail elderly[J/OL]. Sci. Rep., 2019, 9(1): 17821[2025-02-27]. . |
[10] | ISSEMANN I, GREEN S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators[J]. Nature, 1990, 347(6294): 645-650. |
[11] | KONG S, CAI B, NIE Q. PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis[J]. Mol. Genet. Genom., 2022, 297(3): 621-633. |
[12] | QIAN L, ZHU Y, DENG C, et al.. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases[J/OL]. Signal Transduct Target Ther., 2024, 9(1): 50[2025-02-27]. . |
[13] | LIU C, LIN J D. PGC-1 coactivators in the control of energy metabolism[J]. Acta Biochim. Biophys. Sin., 2011, 43(4): 248-257. |
[14] | CHEN S D, LIN T K, LIN J W, et al.. Activation of calcium/calmodulin-dependent protein kinase Ⅳ and peroxisome proliferator-activated receptor γ coactivator-1α signaling pathway protects against neuronal injury and promotes mitochondrial biogenesis in the hippocampal CA1 subfield after transient global ischemia[J]. J. Neurosci. Res., 2010, 88(14): 3144-3154. |
[15] | ISLAM H, EDGETT B A, GURD B J. Coordination of mitochondrial biogenesis by PGC-1α in human skeletal muscle: a re-evaluation[J]. Metabolism, 2018, 79: 42-51. |
[16] | FEALY C E, GREVENDONK L, HOEKS J, et al.. Skeletal muscle mitochondrial network dynamics in metabolic disorders and aging[J]. Trends Mol. Med., 2021, 27(11): 1033-1044. |
[17] | PERNAS L, SCORRANO L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function[J]. Annu. Rev. Physiol., 2016, 78: 505-531. |
[18] | TWIG G, ELORZA A, MOLINA A J, et al.. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy[J]. Embo J., 2008, 27(2): 433-446. |
[19] | OLICHON A, ELACHOURI G, BARICAULT L, et al.. OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis[J]. Cell Death Differ., 2007, 14(4): 682-692. |
[20] | ZHANG D, ZHANG Y, MA J, et al.. Cryo-EM structures of S-OPA1 reveal its interactions with membrane and changes upon nucleotide binding[J/OL]. eLife, 2020, 9: e50294[2025-02-27]. . |
[21] | VON DER MALSBURG A, SAPP G M, ZUCCARO K E, et al.. Structural mechanism of mitochondrial membrane remodelling by human OPA1[J]. Nature, 2023, 620(7976): 1101-1108. |
[22] | PALMER C S, OSELLAME L D, LAINE D, et al.. MiD49 and MiD51, new components of the mitochondrial fission machinery[J]. Embo Rep., 2011, 12(6): 565-573. |
[23] | ZHAO J, LIU T, JIN S, et al.. Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission[J]. Embo J., 2011, 30(14): 2762-2778. |
[24] | LOSÓN O C, SONG Z, CHEN H, et al.. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission[J]. Mol. Biol. Cell, 2013, 24(5): 659-667. |
[25] | CHATZINIKITA E, MARIDAKI M, PALIKARAS K, et al.. The role of mitophagy in skeletal muscle damage and regeneration[J/OL]. Cells, 2023, 12(5): 716[2025-02-27]. . |
[26] | RILEY B E, LOUGHEED J C, CALLAWAY K, et al.. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases[J/OL]. Nat. Commun., 2013, 4: 1982[2025-02-27]. . |
[27] | GEISLER S, HOLMSTRÖM K M, SKUJAT D, et al.. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J]. Nat. Cell Biol., 2010, 12(2): 119-131. |
[28] | LAZAROU M, SLITER D A, KANE L A, et al.. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy[J]. Nature, 2015, 524(7565): 309-314. |
[29] | WU W, LIN C, WU K, et al.. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions[J]. Embo J., 2016, 35(13): 1368-1384. |
[30] | CHEN H, DETMER S A, EWALD A J, et al.. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development[J]. J. Cell Biol., 2003, 160(2): 189-200. |
[31] | BACH D, PICH S, SORIANO F X, et al.. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism a novel regulatory mechanism altered in obesity[J]. J. Biol. Chem., 2003, 278(19): 17190-17197. |
[32] | HOUZELLE A, JÖRGENSEN J A, SCHAART G, et al.. Human skeletal muscle mitochondrial dynamics in relation to oxidative capacity and insulin sensitivity[J]. Diabetologia, 2021, 64(2): 424-436. |
[33] | ZHENG P, MA W, GU Y, et al.. High-fat diet causes mitochondrial damage and downregulation of mitofusin-2 and optic atrophy-1 in multiple organs[J]. J. Clin. Biochem. Nutr., 2023, 73(1): 61-76. |
[34] | SPIEGEL R, SAADA A, FLANNERY P J, et al.. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation[J]. J. Med. Genet., 2016, 53(2): 127-131. |
[35] | DULAC M, PLEDUC G J, REYNAUD O, et al.. Drp1 knockdown induces severe muscle atrophy and remodelling, mitochondrial dysfunction, autophagy impairment and denervation[J]. J. Physiol., 2020, 598(17): 3691-3710. |
[36] | YASUDA T, ISHIHARA T, ICHIMURA A, et al.. Mitochondrial dynamics define muscle fiber type by modulating cellular metabolic pathways[J/OL]. Cell Rep., 2023, 42(5): 112434[2025-02-27]. . |
[37] | FAVARO G, ROMANELLO V, VARANITA T, et al.. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass[J/OL]. Nat. Commun., 2019, 10(1): 2576[2025-02-27]. . |
[38] | LEE T T, CHEN P L, SU M P, et al.. Loss of Fis1 impairs proteostasis during skeletal muscle aging in Drosophila [J/OL]. Aging Cell, 2021, 20(6): e13379[2025-02-27]. . |
[39] | ZHANG Z, SLITER D A, BLECK C K E, et al.. Fis1 deficiencies differentially affect mitochondrial quality in skeletal muscle[J]. Mitochondrion, 2019, 49: 217-226. |
[40] | PEKER N, DONIPADI V, SHARMA M, et al.. Loss of Parkin impairs mitochondrial function and leads to muscle atrophy[J]. Am. J. Physiol. Cell Physiol., 2018, 315(2): 164-185. |
[41] | GOUSPILLOU G, GODIN R, PIQUEREAU J, et al.. Protective role of Parkin in skeletal muscle contractile and mitochondrial function[J]. J. Physiol., 2018, 596(13): 2565-2579. |
[42] | ITO A, HASHIMOTO M, TANIHATA J, et al.. Involvement of Parkin-mediated mitophagy in the pathogenesis of chronic obstructive pulmonary disease-related sarcopenia[J]. J. Cachexia Sarcopenia Muscle, 2022, 13(3): 1864-1882. |
[43] | LEDUC-GAUDET J P, MAYAKID, REYNAUDO, et al.. Parkin overexpression attenuates sepsis-induced muscle wasting[J/OL]. Cells, 2020, 9(6): 1454[2025-02-27. . |
[44] | AXELROD C L, FEALY C E, MULYA A, et al.. Exercise training remodels human skeletal muscle mitochondrial fission and fusion machinery towards a pro-elongation phenotype[J/OL]. Acta Physiol., 2019, 225(4): e13216[2025-02-27]. . |
[45] | FU T, XU Z, LIU L, et al.. Mitophagy directs muscle-adipose crosstalk to alleviate dietary obesity[J]. Cell Rep., 2018, 23(5): 1357-1372. |
[46] | SUNTAR I, SUREDA A, BELWAL T, et al.. Natural products, PGC-1α, and Duchenne muscular dystrophy[J]. Acta Pharm. Sin. B, 2020, 10(5): 734-745. |
[47] | LIN J, WU H, TARR P T, et al.. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres[J]. Nature, 2002, 418(6899): 797-801. |
[48] | ROWE G C, PATTEN I S, ZSENGELLER Z K, et al.. Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle[J]. Cell Rep., 2013, 3(5): 1449-1456. |
[49] | ROBERTS-WILSON T K, REDDY R N, BAILEY J L, et al.. Calcineurin signaling and PGC-1 alpha expression are suppressed during muscle atrophy due to diabetes[J]. Biochim. Biophys. Acta, 2010, 1803(8): 960-967. |
[50] | SATO K, SATOSHI Y, MIYAUCHI Y, et al.. Downregulation of PGC-1α during cisplatin-induced muscle atrophy in murine skeletal muscle[J/OL]. Biochim. Biophys. Acta Mol. Basis Dis., 2024, 1870(1): 166877[2025-02-27]. . |
[51] | GARCIA S, NISSANKA N, MARECO E A, et al.. Overexpression of PGC-1α in aging muscle enhances a subset of young-like molecular patterns[J/OL]. Aging Cell, 2018, 17(2): e12707[2025-02-27]. . |
[52] | KIM H, CHO S C, JEONG H J, et al.. Indoprofen prevents muscle wasting in aged mice through activation of PDK1/AKT pathway[J]. J. Cachexia Sarcopenia Muscle, 2020, 11(4): 1070-1088. |
[53] | BALAN E, SCHWALM C, NASLAIN D, et al.. Regular endurance exercise promotes fission, mitophagy, and oxidative phosphorylation in human skeletal muscle independently of age[J/OL]. Physiol, 2019, 10: 1088[2025-02-27]. . |
[54] | MUSCI R V, ANDRIE K M, WALSH M A, et al.. Phytochemical compound PB125 attenuates skeletal muscle mitochondrial dysfunction and impaired proteostasis in a model of musculoskeletal decline[J]. J. Physiol., 2023, 601(11): 2189-2216. |
[55] | HUANG D, YUE F, QIU J, et al.. Polymeric nanoparticles functionalized with muscle-homing peptides for targeted delivery of phosphatase and tensin homolog inhibitor to skeletal muscle[J]. Acta Biomater., 2020, 118: 196-206. |
[56] | THEILEN N T, JEREMIC N, WEBER G J, et al.. TFAM overexpression diminishes skeletal muscle atrophy after hindlimb suspension in mice[J]. Arch. Biochem. Biophys., 2019, 666: 138-147. |
[1] | 赵艺玮, 高甜璐, 张佳辉, 王钰淇, 常盼, 王红. 线粒体质量控制失衡导致糖尿病肾病肾间质纤维化的研究进展[J]. 生物技术进展, 2024, 14(5): 825-831. |
[2] | 邱冰滢, 陈雪瑶, 王辉, 李晨虹, 张东升. 基于基因富集的鸟类线粒体基因组快速获取方法研究[J]. 生物技术进展, 2024, 14(4): 618-630. |
[3] | 王钰淇, 王心雨, 王颖凡, 孟远翠, 严喜章, 常盼. 线粒体生物合成在糖尿病心肌病中的研究进展[J]. 生物技术进展, 2024, 14(2): 221-227. |
[4] | 张兰兰, 李才华, 方雨竹, 宋岩, 康婉琳, 李志宇, 张晓, 张锐. 线粒体SSR分子标记在植物中的应用进展[J]. 生物技术进展, 2023, 13(6): 821-826. |
[5] | 潘舟, 胡克. 线粒体功能障碍在缺氧性肺动脉高压中的作用[J]. 生物技术进展, 2023, 13(6): 882-888. |
[6] | 张卫平, 邱冰滢, 张东升. 不同食性雁形目鸟类线粒体基因组的适应性进化分析[J]. 生物技术进展, 2023, 13(5): 748-754. |
[7] | 马晨, 宋怡菲, 仪杨, 刘子怡, 谢飞, 马雪梅. 氢气与线粒体作用关系的研究进展[J]. 生物技术进展, 2023, 13(3): 366-374. |
[8] | 张晓, 李才华, 王婧, 张兰兰, 牟晓雨, 王昕玥, 甘刘美, 周鹏展, 张锐. 基因加倍对棉花线粒体atpA基因RNA编辑率的影响[J]. 生物技术进展, 2022, 12(5): 737-745. |
[9] | 宋怡菲, 谢飞, 马晨, 马雪梅. 高等植物氢化酶活性研究进展[J]. 生物技术进展, 2022, 12(4): 481-489. |
[10] | 侯凯耀, 张二飞, 郑李娜, 陈红光, 谢克亮. 富氢液对脓毒症小鼠心肌细胞线粒体自噬的影响[J]. 生物技术进展, 2022, 12(4): 497-502. |
[11] | 马雪梅,张鑫,谢飞,赵鹏翔,张昭,仪杨,张晓康,马胜男,李秦剑,吕宝北,刘梦昱,YAO Mawulikplimi Adzavon,孙学军,李英贤. 氢气生物学作用的生物酶基础[J]. 生物技术进展, 2020, 10(1): 15-22. |
[12] | 林晶晶,杨宇丰. 线粒体自噬的调控机制及其在相关疾病中的作用[J]. 生物技术进展, 2019, 9(5): 467-475. |
[13] | 王裴林,周利利,梁成真,孟志刚,郭三堆,张锐. 棉花线粒体基因cRT-PCR改良及其在寻找CMS相关基因中的应用[J]. 生物技术进展, 2019, 9(3): 303-308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部