1 |
JAMIESON C H, GOTLIB J, DUROCHER J A, et al.. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(16): 6224-6229.
|
2 |
GRINFELD J, NANGALIA J, BAXTER E J, et al.. Classification and personalized prognosis in myeloproliferative neoplasms[J]. N. Engl. J. Med., 2018, 379(15): 1416-1430.
|
3 |
CAMPBELL P J, GREEN A R. The myeloproliferative disorders[J]. N. Engl. J. Med., 2006, 355(23): 2452-2466.
|
4 |
TYNER J W, BUMM T G, DEININGER J, et al.. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms[J]. Blood, 2010, 115(25): 5232-5240.
|
5 |
TEFFERI A, VAIDYA R, CARAMAZZA D, et al.. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study[J]. J. Clin. Oncol., 2011, 29(10): 1356-1363.
|
6 |
HOERMANN G, GREINER G, VALENT P. Cytokine regulation of microenvironmental cells in myeloproliferative neoplasms[J/OL]. Mediat. Inflamm., 2015, 2015: 869242[2024-04-07]. .
|
7 |
EDGAR R, DOMRACHEV M, LASH A E. Gene expression omnibus: NCBI gene expression and hybridization array data repository[J]. Nucleic Acids Res., 2002, 30(1): 207-210.
|
8 |
BAUMEISTER J, MAIÉ T, CHATAIN N, et al.. Early and late stage MPN patients show distinct gene expression profiles in CD34+ cells[J]. Ann. Hematol., 2021, 100(12): 2943-2956.
|
9 |
ZINI R, GUGLIELMELLI P, PIETRA D, et al.. CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles[J/OL]. Blood Cancer J., 2017, 7(12): 638[2024-04-07]. .
|
10 |
RITCHIE M E, PHIPSON B, WU D, et al.. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J/OL]. Nucleic Acids Res., 2015, 43(7): e47[2024-04-07]. .
|
11 |
ZHOU Y, ZHOU B, PACHE L, et al.. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J/OL]. Nat. Commun., 2019, 10(1): 1523[2024-04-07]. .
|
12 |
SZKLARCZYK D, GABLE A L, LYON D, et al.. STRING V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res., 2019, 47(D1): 607-613.
|
13 |
SHANNON P, MARKIEL A, OZIER O, et al.. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res., 2003, 13(11): 2498-2504.
|
14 |
BADER G D, HOGUE C W V. An automated method for finding molecular complexes in large protein interaction networks[J/OL]. BMC Bioinformatics, 2003, 4: 2[2024-04-07]. .
|
15 |
HCHIN C, CHEN S H, WU H H, et al.. CytoHubba: identifying hub objects and sub-networks from complex interactome[J/OL]. BMC Syst. Biol., 2014, 8(S4): S11[2024-04-07]. .
|
16 |
UDDIN M P, MAMUN MAL, AFJAL M I, et al.. Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification[J]. Int. J. Remote. Sens., 2021, 42(1): 286-321.
|
17 |
MARIN OYARZÚN C P, CARESTIA A, LEV P R, et al.. Neutrophil extracellular trap formation and circulating nucleosomes in patients with chronic myeloproliferative neoplasms[J/OL]. Sci. Rep., 2016, 6: 38738[2024-04-07]. .
|
18 |
王迪,赵艳红,梁一鹏,等.CXCL2在巨核细胞分化过程中的功能研究[J].生物技术进展,2023,13(2):257-263.
|
|
WANG D, ZHAO Y H, LIANG Y P, et al.. Research on the function of CXCL2 during megakaryocyte differentiation[J]. Curr. Biotechnol., 2023, 13(2): 257-263.
|
19 |
KLEPPE M, KOCHE R, ZOU L, et al.. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms[J]. Cancer Cell, 2018, 33(4): 785-787.
|
20 |
MENDEZ LUQUE L F, BLACKMON A L, RAMANATHAN G, et al.. Key role of inflammation in myeloproliferative neoplasms: instigator of disease initiation, progression. and symptoms[J]. Curr. Hematol. Malig. Rep., 2019, 14(3): 145-153.
|
21 |
KLEPPE M, KWAK M, KOPPIKAR P, et al.. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response[J]. Cancer Discov., 2015, 5(3): 316-331.
|
22 |
FLEISCHMAN A G, AICHBERGER K J, LUTY S B, et al.. TNFα facilitates clonal expansion of JAK2 V617F positive cells in myeloproliferative neoplasms[J]. Blood, 2011, 118(24): 6392-6398.
|
23 |
SKOV V, LARSEN T S, THOMASSEN M, et al.. Whole-blood transcriptional profiling of interferon-inducible genes identifies highly upregulated IFI27 in primary myelofibrosis[J]. Eur. J. Haematol., 2011, 87(1): 54-60.
|
24 |
BAXTER E J, SCOTT L M, CAMPBELL P J, et al.. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders[J]. Lancet, 2005, 365(9464): 1054-1061.
|
25 |
LARSEN T S, CHRISTENSEN J H, HASSELBALCH H C, et al.. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders[J]. Br. J. Haematol., 2007, 136(5): 745-751.
|
26 |
RAHMAN M F, YANG Y, LE B T, et al.. Interleukin-1 contributes to clonal expansion and progression of bone marrow fibrosis in JAK 2 V617F-induced myeloproliferative neoplasm[J/OL]. Nat. Commun., 2022, 13(1): 5347[2024-04-07]. .
|
27 |
STONE M J, HAYWARD J A, HUANG C, et al.. Mechanisms of regulation of the chemokine-receptor network[J/OL]. Int. J. Mol. Sci., 2017, 18(2): 342[2024-04-07]. .
|
28 |
DUNBAR A J, KIM D, LU M, et al.. CXCL8/CXCR2 signaling mediates bone marrow fibrosis and is a therapeutic target in myelofibrosis[J]. Blood, 2023, 141(20): 2508-2519.
|
29 |
AUGOFF K, HRYNIEWICZ-JANKOWSKA A, TABOLA R, et al.. MMP9: a tough target for targeted therapy for cancer[J/OL]. Cancers, 2022, 14(7): 1847[2024-04-07]. .
|
30 |
VUKOTIĆ M, KAPOR S, DRAGOJEVIĆ T, et al.. Inhibition of proinflammatory signaling impairs fibrosis of bone marrow mesenchymal stromal cells in myeloproliferative neoplasms[J]. Exp. Mol. Med., 2022, 54(3): 273-284.
|
31 |
MOLITOR D C A, BOOR P, BUNESS A, et al.. Macrophage frequency in the bone marrow correlates with morphologic subtype of myeloproliferative neoplasm[J]. Ann. Hematol., 2021, 100(1): 97-104.
|
32 |
SCHATTNER M. Platelet TLR4 at the crossroads of thrombosis and the innate immune response[J]. J. Leukoc. Biol., 2019, 105(5): 873-880.
|
33 |
MARÍN OYARZÚN C P, GLEMBOTSKY A C, GOETTE N P, et al.. Platelet toll-like receptors mediate thromboinflammatory responses in patients with essential thrombocythemia[J/OL]. Front. Immunol., 2020, 11: 705[2024-04-07]. .
|
34 |
TAKEDA Y, NAKASEKO C, TANAKA H, et al.. Direct activation of STAT5 by ETV6-LYN fusion protein promotes induction of myeloproliferative neoplasm with myelofibrosis[J]. Br. J. Haematol., 2011, 153(5): 589-598.
|