生物技术进展 ›› 2023, Vol. 13 ›› Issue (2): 174-180.DOI: 10.19586/j.2095-2341.2022.0203
• 进展评述 • 上一篇
收稿日期:
2022-11-03
接受日期:
2023-01-06
出版日期:
2023-03-25
发布日期:
2023-04-07
通讯作者:
卢永忠
作者简介:
赵俊魁 E-mail:happyzhaojk@163.com;
基金资助:
Received:
2022-11-03
Accepted:
2023-01-06
Online:
2023-03-25
Published:
2023-04-07
Contact:
Yongzhong LU
摘要:
蓝藻固碳能力强、易于进行遗传操作,是开发绿色生物技术产品的理想细胞工厂。但长期以来,许多研究成果仍处于实验室阶段,各种化学品生产的效率较低。结合蓝藻自身优势,充分利用现代生物技术手段,将有助于促进蓝藻细胞工厂的深入研究和发展。以蓝藻生物技术发展过程为主线,分别介绍了基因工程、代谢工程及合成生物学在蓝藻细胞工厂研究中取得的成果,并指出“药食同源”是蓝藻表达外源药物蛋白,实现成果转化的发展方向;开发先进的合成生物学工具,改造、设计和重构蓝藻底盘细胞代谢途径,是实现化学品高效生产的必由之路。期望为蓝藻生物技术相关问题的深入研究提供参考。
中图分类号:
赵俊魁, 卢永忠. 蓝藻细胞工厂的研究进展[J]. 生物技术进展, 2023, 13(2): 174-180.
Junkui ZHAO, Yongzhong LU. Research Progress of Cyanobacteria Cell Factories[J]. Current Biotechnology, 2023, 13(2): 174-180.
外源蛋白 | 功能 | 藻株 | 文献 |
---|---|---|---|
人肝金属硫蛋白-IA( | 金属代谢、抗氧化等 | Anabaena PCC7120 | [ |
人尿激酶原基因(pro-urokinase) | 溶栓 | Synechococcus sp. PCC7002 | [ |
人肿瘤坏死因子α(hTNF-α) | 杀伤肿瘤细胞 | Anabaena PCC7102 | [ |
人表皮生长因子(hEGF) | 促进表皮细胞生长等 | Synechococcus sp. PCC7002 | [ |
抗氧化、抗辐射损伤等 | Synechococcus sp. PCC7942 | [ | |
人粒-巨噬细胞集落刺激因子(hGM-CSF)) | 造血调控、免疫调节等 | Anabaena PCC7102 | [ |
Eta1-L-Gapdh蛋白 | 预防鱼类迟缓爱德华氏菌感染 | Anabaena PCC7120 | [ |
病毒包膜蛋白(vp28) | 预防对虾白斑综合征病毒 | Synechococcus sp. PCC7942, Anabaena PCC7120 | [ |
人粒细胞集落刺激因子(hG-CSF) | 造血调控 | Anabaena PCC7102 | [ |
病毒包膜蛋白(vp19) | 预防对虾白斑综合征病毒 | Synechococcus sp. PCC7942 | [ |
胸腺α1(Tα1) | 增强免疫 | Spirulina | [ |
表1 外源蛋白在蓝藻中的表达
Table 1 Expression of exogenous protein in cyanobacteria
外源蛋白 | 功能 | 藻株 | 文献 |
---|---|---|---|
人肝金属硫蛋白-IA( | 金属代谢、抗氧化等 | Anabaena PCC7120 | [ |
人尿激酶原基因(pro-urokinase) | 溶栓 | Synechococcus sp. PCC7002 | [ |
人肿瘤坏死因子α(hTNF-α) | 杀伤肿瘤细胞 | Anabaena PCC7102 | [ |
人表皮生长因子(hEGF) | 促进表皮细胞生长等 | Synechococcus sp. PCC7002 | [ |
抗氧化、抗辐射损伤等 | Synechococcus sp. PCC7942 | [ | |
人粒-巨噬细胞集落刺激因子(hGM-CSF)) | 造血调控、免疫调节等 | Anabaena PCC7102 | [ |
Eta1-L-Gapdh蛋白 | 预防鱼类迟缓爱德华氏菌感染 | Anabaena PCC7120 | [ |
病毒包膜蛋白(vp28) | 预防对虾白斑综合征病毒 | Synechococcus sp. PCC7942, Anabaena PCC7120 | [ |
人粒细胞集落刺激因子(hG-CSF) | 造血调控 | Anabaena PCC7102 | [ |
病毒包膜蛋白(vp19) | 预防对虾白斑综合征病毒 | Synechococcus sp. PCC7942 | [ |
胸腺α1(Tα1) | 增强免疫 | Spirulina | [ |
产物 | 功能 | 藻种名 | 文献 |
---|---|---|---|
色氨酸 | 动物饲料添加剂等 | Synechocystis sp. PCC6803 | [ |
二十碳五烯酸 | 降血脂、降血压等 | Synechococcus sp. NKBG042902 | [ |
ω-3脂肪酸 | 调整血脂、生物能源 | Synechococcus sp. NKBG15041c | [ |
柠檬烯 | 镇咳、祛痰、抑菌等 | Synechocystis sp. PCC6803 | [ |
鲨烯 | 药用 | Synechocystis sp. PCC6803 | [ |
肌醇 | 生长因子 | Synechocystis sp. PCC6803 | [ |
虾青素 | 抗氧化 | Synechocystis sp. PCC6803 | [ |
维生素B2 | 维生素 | Synechococcus sp. PCC7002 | [ |
木糖醇 | 防龋齿、改善肝功能、调节肠道等 | Synechococcus sp. PCC7942 | [ |
海澡糖 | 食品添加剂 | Synechocystis sp. PCC6803 | [ |
乙醇 | 生物能源 | Synechococcus sp. PCC7942, Synechococcus sp. PCC7002 | [ |
氢气 | 生物能源 | Cyanothece sp. ATCC51142 | [ |
聚羟基脂肪酸酯 | 生物塑料 | Synechococcus sp. MA19 | [ |
乙烯 | 化工原料 | Synechocystis sp. PCC6803 | [ |
异丁醇 | 化工原料、能源 | Synechocystis sp. PCC6803 | [ |
丁二醇 | 化工原料、能源 | Synechococcus sp. PCC7942 | [ |
聚乳酸 | 生物塑料 | Synechococcus sp. PCC7942 | [ |
表2 蓝藻代谢工程产物
Table 2 Metabolic engineering products of cyanobacteria
产物 | 功能 | 藻种名 | 文献 |
---|---|---|---|
色氨酸 | 动物饲料添加剂等 | Synechocystis sp. PCC6803 | [ |
二十碳五烯酸 | 降血脂、降血压等 | Synechococcus sp. NKBG042902 | [ |
ω-3脂肪酸 | 调整血脂、生物能源 | Synechococcus sp. NKBG15041c | [ |
柠檬烯 | 镇咳、祛痰、抑菌等 | Synechocystis sp. PCC6803 | [ |
鲨烯 | 药用 | Synechocystis sp. PCC6803 | [ |
肌醇 | 生长因子 | Synechocystis sp. PCC6803 | [ |
虾青素 | 抗氧化 | Synechocystis sp. PCC6803 | [ |
维生素B2 | 维生素 | Synechococcus sp. PCC7002 | [ |
木糖醇 | 防龋齿、改善肝功能、调节肠道等 | Synechococcus sp. PCC7942 | [ |
海澡糖 | 食品添加剂 | Synechocystis sp. PCC6803 | [ |
乙醇 | 生物能源 | Synechococcus sp. PCC7942, Synechococcus sp. PCC7002 | [ |
氢气 | 生物能源 | Cyanothece sp. ATCC51142 | [ |
聚羟基脂肪酸酯 | 生物塑料 | Synechococcus sp. MA19 | [ |
乙烯 | 化工原料 | Synechocystis sp. PCC6803 | [ |
异丁醇 | 化工原料、能源 | Synechocystis sp. PCC6803 | [ |
丁二醇 | 化工原料、能源 | Synechococcus sp. PCC7942 | [ |
聚乳酸 | 生物塑料 | Synechococcus sp. PCC7942 | [ |
1 | JAISWAL D, SAHASRABUDDHE D, WANGIKAR P P. Cyanobacteria as cell factories: the roles of host and pathway engineering and translational research[J]. Curr. Opin. Biotechnol., 2022, 73: 314-322. |
2 | NG I S, KESKIN B B, TAN S I. A critical review of genome editing and synthetic biology applications in metabolic engineering of microalgae and cyanobacteria[J/OL]. Biotechnol. J., 2020, 15(8): e1900228[2022-12-20]. . |
3 | RUFFING A M, KALLAS T. Editorial: cyanobacteria: the green E . coli[J/OL]. Front. Bioeng. Biotechnol., 2016, 4: 7[2022-12-20]. . |
4 | 席超,王春梅,施定基.蓝藻基因工程应用研究进展[J].中国生物工程杂志,2010,30(3):105-111. |
5 | 徐旭东,孔任秋,胡玉祥.基因工程杀蚊幼蓝藻的研究[J].中国媒介生物学及控制杂志,1993,4(4):244-247. |
6 | 任黎,邵强,施定基,等.人肝金属硫蛋白-IA基因在鱼腥藻中的克隆与表达[J].中国生物化学与分子生物学报,1998,14(4):15-21. |
7 | 罗娜,宁叶,施定基,等.人尿激酶原基因在聚球藻7002中的克隆和表达[J].植物学报,2000,42(9):931-935. |
8 | 施定基,叶欣,钟晖,等. TNFα基因在鱼腥藻7120中的表达及其产物的亲和层析纯化[J].植物学报,2001,43(1):46-50. |
9 | 戴溦,施定基,张卉,等.人表皮生长因子(hEGF)基因在蓝藻中的表达[J].植物学报,2001,43(12):1260-1264. |
10 | 刘仁海,高淑彬,章军,等.转hCu,Zn-SOD突变基因聚球藻抗氧化作用的研究[J].中国海洋药物,2007,26(6):10-12. |
11 | 魏兰珍,谭玮,王全喜.启动子Pcpcβ提高鱼腥藻7120中hGM-CSF基因表达效率的研究[J].西北植物学报,2008,28(1):37-42. |
12 | 王智,张泽峰,王晶晶,等.迟缓爱德华氏菌Eta1-L-Gapdh融合蛋白在蓝藻中的表达[J].微生物学杂志,2016,36(5):78-84. |
13 | 郭媛媛,殷嵘,施定基,等.转vp28蓝藻口服剂对凡纳滨对虾抗白斑综合征病毒能力及免疫反应的影响[J].水产学报,2017, 41(9):1473-1485. |
14 | 庄旻敏,贾晓会,施定基,等.转基因聚球藻7942中vp28基因表达效率及其光合特性分析[J].中国生物工程杂志,2018,38(4):30-37. |
15 | 徐杨,谢京昆,李赟卉,等.转基因vp28蓝藻口服疫苗半数有效量测定及其对斑马鱼的安全评价[J].水产学报,2021,45(2):255-264. |
16 | 谢雪晴,田钰琪,田敬欢,等.T7 RNA聚合酶基因表达系统在鱼腥藻7120中构建及hG-CSF的表达[J].生物工程学报,2020,36(11):2467-2477. |
17 | 朱婵,施定基,何培民,等.转基因聚球藻7942的vp19基因表达效率及其光合生理特性研究[J].上海农业学报,2021,37(4): 36-41. |
18 | 朱小明,章军,徐虹,等.转胸腺素基因螺旋藻的表达及免疫增强活性研究[J].福建农业学报,2005,20(4):228-232. |
19 | LUAN G, LU X. Tailoring cyanobacterial cell factory for improved industrial properties[J]. Biotechnol. Adv., 2018, 36(2): 430-442. |
20 | XUE Y, HE Q. Cyanobacteria as cell factories to produce plant secondary metabolites[J/OL]. Front. Bioeng. Biotechnol., 2015, 3: 57[2022-12-20]. . |
21 | DESHPANDE A, VUE J, MORGAN J. Combining random mutagenesis and metabolic engineering for enhanced tryptophan production in Synechocystis sp. strain PCC6803[J/OL]. Appl. Environ, Microbiol., 2020, 86(9): e02816-19[2022-12-20]. . |
22 | YU R, YAMADA A, WATANABE K, et al.. Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp.[J]. Lipids, 2000, 35(10): 1061-1064. |
23 | SANTOS-MERINO M, GARCILLÁN-BARCIA M P, DE L A CRUZ F. Engineering the fatty acid synthesis pathway in Synechococcus elongates PCC 7942 improves omega-3 fatty acid production[J/OL]. Biotechnol. Biofuels., 2018, 11: 239[2022-12-20]. . |
24 | LIN P C, SAHA R, ZHANG F, et al.. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC6803[J/OL]. Sci. Rep., 2017, 7(1): 17503[2022-12-20]. . |
25 | ENGLUND E, PATTANAIK B, UBHAYASEKERA S J, et al.. Production of squalene in Synechocystis sp. PCC 6803[J/OL]. PLoS ONE, 2014, 9(3): e90270[2022-12-20]. . |
26 | WANG X, CHEN L, LIU J, et al.. Light-driven biosynthesis of myo-inositol directly from CO2 in Synechocystis sp. PCC6803[J/OL]. Front. Microbiol., 2020, 11: 566117[2022-12-20]. . |
27 | DIAO J, SONG X, ZHANG L, et al.. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin[J]. Metab. Eng., 2020, 61: 275-287. |
28 | KACHEL B, MACK M. Engineering of Synechococcus sp. strain PCC7002 for the photoautotrophic production of light-sensitive riboflavin (vitamin B2)[J]. Metab. Eng., 2020, 62: 275-286. |
29 | FAN E S, LU K W, WEN R C, et al.. Photosynthetic reduction of xylose to xylitol using cyanobacteria[J/OL]. Biotechnol. J., 2020, 15(6): e1900354[2022-12-20]. . |
30 | QIAO Y, WANG W, LU X. Engineering cyanobacteria as cell factories for direct trehalose production from CO2 [J]. Metab. Eng., 2020, 62: 161-171. |
31 | ANDREWS F, FAULKNER M, TOOGOOD H S, et al.. Combinatorial use of environmental stresses and genetic engineering to increase ethanol titres in cyanobacteria[J/OL]. Biotechnol. Biofuels., 2021, 14(1): 240[2022-12-20]. . |
32 | AGARWAL P, SONI R, KAUR P, et al.. Cyanobacteria as a promising alternative for sustainable environment: synthesis of biofuel and biodegradable plastics[J/OL]. Front. Microbiol., 2022, 13: 939347[2022-12-20]. . |
33 | VEETIL V P, ANGERMAYR S A, HELLINGWERF K J. Ethylene production with engineered Synechocystis sp. PCC6803 strains[J/OL]. Microb. Cell. Fact., 2017, 16(1): 34[2022-12-20]. . |
34 | VARMAN A M, XIAO Y, PAKRASI H B, et al.. Metabolic engineering of Synechocystis sp. strain PCC6803 for isobutanol production[J]. Appl. Environ. Microbiol., 2013, 79(3): 908-914. |
35 | OLIVER J W, MACHADO I M, YONEDA H, et al.. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol[J]. Proc. Natl Acad. Sci. USA, 2013, 110(4): 1249-1254. |
36 | TAN C, TAO F, XU P. Direct carbon capture for the production of high-performance biodegradable plastics by cyanobacterial cell factories[J]. Green. Chem., 2022, 24: 4470-4483. |
37 | 张春月,金佳杨,邱勇隽,等.传统与未来的碰撞:食品发酵工程技术与应用进展[J].生物技术进展,2021,11(4):418-429. |
38 | LIU D, LIBERTON M, HENDRY J I, et al.. Engineering biology approaches for food and nutrient production by cyanobacteria[J]. Curr. Opin. Biotechnol., 2021, 67: 1-6. |
39 | KRISHNAN A, QIAN X, ANANYEV G, et al.. Rewiring of cyanobacterial metabolism for hydrogen production: synthetic biology approaches and challenges[J]. Adv. Exp. Med. Biol., 2018, 1080: 171-213. |
40 | VELMURUGAN R, INCHAROENSAKDI A. Metabolic transformation of cyanobacteria for biofuel production[J/OL]. Chemosphere, 2022, 299: 134342[2022-12-20]. . |
41 | REDDING K E, APPEL J, BOEHM M, et al.. Advances and challenges in photosynthetic hydrogen production[J]. Trends. Biotechnol., 2022, 40(11): 1313-1325. |
42 | WANG F, GAO Y, YANG G. Recent advances in synthetic biology of cyanobacteria for improved chemicals production[J]. Bioengineered, 2020, 11(1): 1208-1220. |
43 | LI C, ZHENG J, WU Y, et al.. Light-driven synthetic biology: progress in research and industrialization of cyanobacterial cell factory[J/OL]. Life(Basel), 2022, 12(10): 1537[2022-12-20]. . |
44 | SENGUPTA A, PAKRASI H B, WANGIKAR P P. Recent advances in synthetic biology of cyanobacteria[J]. Appl. Microbiol. Biotechnol., 2018, 102(13): 5457-5471. |
45 | ENGLUND E, LIANG F, LINDBERG P. Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC6803[J/OL]. Sci. Rep., 2016, 6: 36640[2022-12-20]. . |
46 | THIEL K, MULAKU E, DANDAPANI H, et al.. Translation efficiency of heterologous proteins is significantly affected by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis sp. PCC6803[J/OL]. Microb. Cell. Fact, 2018, 17(1): 34[2022-12-20]. . |
47 | LIU D, PAKRASI H B. Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC6803[J/OL]. Microb. Cell. Fact, 2018, 17(1): 48[2022-12-20]. . |
48 | 曹豪豪,张红兵,薛溪发,等.新型基因编辑技术在单细胞微藻中的应用进展[J].生物技术进展,2021,11(1):9-15. |
49 | BALDANTA S, GUEVARA G, NAVARRO-LLORENS J M. SEVA-Cpf 1, a CRISPR-Cas12a vector for genome editing in cyanobacteria[J/OL]. Microb. Cell. Fact, 2022, 21(1): 103[2022-12-20]. . |
50 | UNGERER J, PAKRASI H B. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria[J/OL]. Sci. Rep., 2016, 6: 39681[2022-12-20]. . |
51 | GORDON G C, KOROSH T C, CAMERON J C, et al.. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC7002[J]. Metab. Eng., 2016, 38: 170-179. |
52 | YAO L, SHABESTARY K, BJÖRK S M, et al.. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp. PCC6803 for enhanced industrial phenotypes[J/OL]. Nat. Commun., 2020, 11(1): 1666[2020-04-03]. . |
53 | HITCHCOCK A, HUNTER C N, CANNIFFE D P. Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology[J]. Microb. Biotechnol., 2020, 13(2): 363-367. |
54 | 钱美文,谭春林,倪俊,等.蓝细菌细胞工厂合成聚合物单体的研究进展[J].生物工程学报,2021,37(3):1017-1031. |
55 | TREECE T R, GONZALES J N, PRESSLEY J R, et al.. Synthetic biology approaches for improving chemical production in cyanobacteria[J/OL]. Front. Bioeng. Biotechnol., 2022, 10: 869195[2022-12-20]. . |
[1] | 陈洁, 黄永康, 王希. 合成生物学在化工新材料领域的应用及展望[J]. 生物技术进展, 2023, 13(1): 39-45. |
[2] | 王安琪,朱华新,赵翔,崔建霞,王琰,崔海信. 基于纳米基因载体的动植物遗传转化研究进展[J]. 生物技术进展, 2018, 8(4): 293-301. |
[3] | 张云威,苏航,刁勇,戚智青. 牛乳铁蛋白肽的抑菌功能及基因工程制备进展[J]. 生物技术进展, 2016, 6(4): 235-238. |
[4] | 李天丽,郑凌凌,张琪,宋立荣. 蓝藻无菌化方法研究进展[J]. 生物技术进展, 2015, 5(5): 329-334. |
[5] | 邱庆庆,任秀莲,吴泽,陈泳兴,魏琦峰. 海藻生物质能源转化的研究现状[J]. 生物技术进展, 2015, 5(3): 153-157. |
[6] | 邓龙,周思,郭新东. 基于基因突变的基因工程抗体亲和力成熟研究[J]. 生物技术进展, 2014, 4(6): 400-404. |
[7] | 何明雄,吴波,谭芙蓉,王景丽,税宗霞,秦晗,代立春,胡启春,. 运动发酵单胞菌在生物炼制中的研究进展[J]. 生物技术进展, 2014, 4(5): 331-339. |
[8] | 牛丽芳,路铁刚,林浩. 水稻高光效育种研究进展[J]. 生物技术进展, 2014, 4(3): 153-157. |
[9] | 杨瑞红. 生物脱硫微生物及基因工程应用的研究进展[J]. 生物技术进展, 2013, 3(3): 190-195. |
[10] | 张亮, 张兰, 王磊. 植物维生素E基因工程研究进展[J]. 生物技术进展, 2012, 2(6): 397-403. |
[11] | 袁志勇,朱红惠,霍光华,冯广达. 微囊藻毒素生物合成及其检测的分子生物学研究进展[J]. 生物技术进展, 2012, 2(5): 328-334. |
[12] | 苗猛猛,王旭静,唐巧玲,王志兴. 抗蚜基因工程研究进展[J]. 生物技术进展, 2012, 2(2): 104-109. |
[13] | 王国增,李轶女,张志芳,沈桂芳. 除草剂抗性基因的研究进展[J]. 生物技术进展, 2011, 1(6): 398-402. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部