生物技术进展 ›› 2022, Vol. 12 ›› Issue (5): 690-695.DOI: 10.19586/j.2095-2341.2022.0065
收稿日期:
2022-04-28
接受日期:
2022-06-22
出版日期:
2022-09-25
发布日期:
2022-09-30
通讯作者:
高权新
作者简介:
刘培敏 E-mail: 303891862@qq.com;
基金资助:
Peimin LIU(), Jinping LUO, Quanxin GAO(
)
Received:
2022-04-28
Accepted:
2022-06-22
Online:
2022-09-25
Published:
2022-09-30
Contact:
Quanxin GAO
摘要:
近年来,水产养殖产业的迅猛发展在带来巨大经济效益的同时,也使周边水质持续恶化。在水产养殖中,微生物在生态平衡和环境保护方面的作用日益明显。着重介绍了养殖水域菌落结构的持续性变化、微生物在水产养殖中的作用以及水产养殖水域微生物群系组成变化的原因,并阐述了改善养殖水环境的生物修复技术,旨在为水产养殖环境微生物的相关研究及其管理提供参考依据。
中图分类号:
刘培敏, 罗金萍, 高权新. 水产养殖环境微生物研究进展[J]. 生物技术进展, 2022, 12(5): 690-695.
Peimin LIU, Jinping LUO, Quanxin GAO. Research Progress of Environmental Microorganisms in Aquaculture[J]. Current Biotechnology, 2022, 12(5): 690-695.
1 | KALANTZI I, RICO A, MYLONA K, et al.. Fish farming,metals and antibiotics in the eastern Mediterranean Sea:is there a threat to sediment wildlife[J/OL]. Sci.Total Environ., 2021, 764: 142843 [2021-04-10]. . |
2 | MONCADA C, HASSENRüCK C, GäRDES A, et al.. Microbial community composition of sediments influenced by intensive mariculture activity[J]. FEMS Microbiol. Ecol., 2019, 95(2): 1-12. |
3 | CAVICCHIOLI R, RIPPLE W J, TIMMIS K N, et al.. Scientists' warning to humanity:microorganisms and climate change[J]. Nat. Rev. Microbiol., 2019, 17(9): 569-586. |
4 | RUBIO-PORTILLO E, VILLAMOR A, FERNANDEZ-GONZALEZ V, et al.. Exploring changes in bacterial communities to assess the influence of fish farming on marine sediments[J]. Aquaculture, 2019, 506: 459-464. |
5 | SHI R, XU S, QI Z, et al.. Influence of suspended mariculture on vertical distribution profiles of bacteria in sediment from Daya Bay,Southern China[J]. Mar. Pollut. Bull., 2019, 146: 816-826. |
6 | ZHANG K, ZHENG X, HE Z, et al.. Fish growth enhances microbial sulfur cycling in aquaculture pond sediments[J]. Microb. Biotechnol., 2020, 13(5): 1597-1610. |
7 | QUERO G M, APE F, MANINI E, et al.. Temporal changes in microbial communities beneath fish farm sediments are related to organic enrichment and fish biomass over a production cycle[J/OL]. Front. Mar. Sci., 2020, 7: 524[2020-06-09]. . |
8 | CHOI A, LEE T K, CHO H, et al.. Shifts in benthic bacterial communities associated with farming stages and a microbiological proxy for assessing sulfidic sediment conditions at fish farms[J/OL]. Mar. Pollut. Bull., 2022, 178: 113603[2022-04-15].. |
9 | KOLDA A, GAVRILOVIĆ A, JUG-DUJAKOVIĆ J, et al.. Profiling of bacterial assemblages in the marine cage farm environment, with implications on fish, human and ecosystem health[J/OL]. Ecol. Indic., 2020, 118: 106785[2020-08-05].. |
10 | LI T, LI H, F-JGATESOUPE, et al.. Bacterial signatures of "Red-Operculum" disease in the gut of crucian carp (Carassius auratus)[J]. Microb. Ecol., 2017, 74(3): 510-521. |
11 | 刘庆辉,余祥勇,张鹤千,等.脱氮除磷益生菌对养殖尾水处理的研究进展[J]. 海洋渔业, 2020, 42(4): 502-512. |
12 | SOME S, MONDAL R, MITRA D, et al.. Microbial pollution of water with special reference to coliform bacteria and their nexus with environment[J/OL]. Energy Nexus, 2021, 1: 100008[2021-08-23]. . |
13 | SU Z, LI Y, PAN L, et al.. An investigation on the immunoassays of an ammonia nitrogen-degrading bacterial strain in aquatic water[J]. Aquaculture, 2016, 450: 17-22. |
14 | TAN L T H, CHAN K G, LEE L H, et al.. Streptomyces bacteria as potential probiotics in aquaculture[J/OL]. Front. Microbiol., 2016, 7: 79[2016-02-05].. |
15 | ZHANG D, LI H, LIU Y, et al.. Screening and identification of organics-degrading bacteria from the sediment of sea cucumber Apostichopus japonicus ponds[J]. Aquacult. Int., 2016, 24(1): 373-384. |
16 | ZHANG D, WANG X, XIONG J, et al.. Bacterioplankton assemblages as biological indicators of shrimp health status[J]. Ecol. Indic., 2014, 38: 218-224. |
17 | ZHENG Y, YU M, LIU J, et al.. Bacterial community associated with healthy and diseased pacific white shrimp (Litopenaeus vannamei) larvae and rearing water across different growth stages[J]. Front. Microbiol., 2017, 8(1362): 1-11. |
18 | OETAMA V S P, HENNERSDORF P, ABDUL-AZIZ M A, et al..Microbiome analysis and detection of pathogenic bacteria of Penaeus monodon from Jakarta Bay and Bali[J]. Mar. Pollut. Bull., 2016, 110(2): 718-725. |
19 | BOUTIN S, BERNATCHEZ L, AUDET C, et al.. Network analysis highlights complex interactions between pathogen, host and commensal microbiota[J/OL]. PLoS ONE, 2013, 8(12): 84772[2013-12-23]. . |
20 | GREEN T J, SIBONI N, KING W L, et al.. Simulated marine heat wave alters abundance and structure of Vibrio populations associated with the pacific oyster resulting in a mass mortality event[J]. Microb. Ecol., 2019, 77(3): 736-747. |
21 | 马景雪,张培玉,王宗兴,等.黄岛近海岸贝类养殖区细菌群落结构多样性及与环境因子响应[J]. 水产学报, 2022, 46(6):984-994. |
22 | 陈昌福,王玉堂.水产养殖中抗生素类药物使用现状、问题与对策(连载一)[J].中国水产,2015(4):65-68. |
23 | ZHANG R, TANG J, LI J, et al.. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China: occurrence,distribution and ecological risks[J]. Environ. Pollut., 2013, 174: 71-77. |
24 | HAN Q F, ZHAO S, ZHANG X R, et al.. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China[J/OL]. Environ. Int., 2020, 138: 105551[2020-03-08].. |
25 | CHEN C Q, ZHENG L, ZHOU J L, et al.. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China[J]. Sci. Total Environ., 2017, 580: 1175-1184. |
26 | ZHANG R, PEI J, ZHANG R, et al.. Occurrence and distribution of antibiotics in mariculture farms, estuaries and the coast of the Beibu Gulf, China: bioconcentration and diet safety of seafood[J]. Ecotox. Environ. Safe., 2018, 154: 27-35. |
27 | BENGTSSON-PALME J, LARSSON D G J. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation[J]. Environ. Int., 2016, 86: 140-149. |
28 | MUNITA J M, ARIAS C A. Mechanisms of antibiotic resistance[J/OL]. Microbiol. Spectr, 2016, 4(2): 10.1128[2016-04-08]. . |
29 | ZAGO V, VESCHETTI L, PATUZZO C, et al.. Shewanella algae and Vibrio spp.strains isolated in Italian aquaculture farms are reservoirs of antibiotic resistant genes that might constitute a risk for human health[J/OL]. Mar. Pollut. Bull., 2020, 154:111057[2020-03-12]. . |
30 | GUO J, LI J, CHEN H, et al.. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements[J]. Water Res., 2017, 123: 468-478. |
31 | PEPI M, FOCARDI S. Antibiotic-resistant bacteria in aquaculture and climate change:a challenge for health in the mediterranean area[J/OL]. Int. J. Env. Res. Pub. He., 2021, 18(11): 5723[2021-03-26]. . |
32 | ADAIR K L, DOUGLAS A E. Making a microbiome: the many determinants of host-associated microbial community composition[J]. Curr. Opin. Microbiol., 2017, 35: 23-29. |
33 | TREVATHAN-TACKETT S M, SHERMAN C D H, HUGGETT M J, et al.. A horizon scan of priorities for coastal marine microbiome research[J]. Nat. Ecol. Evol., 2019, 3(11): 1509-1520. |
34 | BAQUIRAN J I P, CONACO C. Sponge-microbe partnerships are stable under eutrophication pressure from mariculture[J]. Mar. Pollut. Bull., 2018, 136: 125-134. |
35 | 马清扬.上海郊区养殖中华绒螯蟹及其环境微生物多样性分析[D]. 上海:上海海洋大学, 2020. |
36 | 高权新,李云莉,齐占会,等.基于宏基因组学的中国沿海密集养殖水域秋季底质细菌多样性研究[J]. 海洋渔业, 2019, 41(3): 354-363. |
37 | 李燕.水产养殖中的水质问题及解决方法探析[J]. 山西水利科技, 2021(3): 67-69. |
38 | 陈云.水产养殖水环境污染的控制对策[J]. 广东蚕业, 2021, 55(8): 61-62. |
39 | 邱宇忠.水产养殖水体污染的生物修复策略浅析[J]. 南方农业, 2020, 14(9): 174+6. |
40 | 王森,张卡,王泳浩,等.一株油脂降解菌的筛选鉴定及降解效果分析[J]. 生物技术进展, 2021,11(1): 99-104. |
41 | 栗旭阳,黄丽玲,郭倩楠,等.除草剂2,4-D降解菌株的分离、筛选与鉴定[J]. 生物技术进展, 2019, 9(4): 384-395. |
42 | 张欣阳,许旭萍.微生物技术去除抗生素残留污染的研究进展[J]. 生物技术进展, 2014, 4(5): 355-360. |
43 | 杨瑞红.微生物降解硝基芳香族化合物(NAC)的研究进展[J]. 生物技术进展, 2014, 4(3): 171-176. |
44 | 李佳徽,王明阳,田相利,等.三种不同乳酸菌对凡纳滨对虾生长、抗病力及肠道菌群结构的影响[J]. 中国海洋大学学报(自然科学版), 2021, 51(4): 44-54. |
45 | 鲍益虎.淡水养殖水环境的改善方法[J]. 现代农业科技, 2020(3): 209-210. |
46 | 李淑翠.益生菌在对虾养殖中的应用研究[J]. 江西水产科技, 2020(6): 52-53. |
47 | 张紫娟,郑苗欣,邓威,等.克氏原螯虾肠道产植酸酶菌的筛选、鉴定、酶学性质及固态发酵研究[J]. 水产学杂志, 2020, 33(5): 38-44. |
48 | 赵坤,田相利,李永梅 等.凡纳滨对虾养殖池塘高效脱氮芽孢杆菌的分离筛选及特性研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(S1): 17-29. |
49 | 蔡艳,曹根凤,叶盛,等.枯草芽孢杆菌代替抗生素在水产养殖上的应用[J]. 山西农经, 2018(19): 75. |
50 | 陈旭,梁旭方,李姣,等.硝化细菌对加州鲈池塘水质影响及底质净化作用[J]. 水生生物学报, 2020, 44(2): 399-406. |
51 | 孙阳,赵燕楠,王浩,等.利用光合细菌进行微生物修复:一种降低辛硫磷在养殖水中积累的低成本方法[J].微生物学通报, 2021, 48(12): 4541-4554. |
52 | 赵亚宣. 光合细菌固定化及其去除污水中氮磷的研究[D]. 天津:天津科技大学, 2019. |
53 | 田启文. 光合细菌的分离鉴定与发酵条件优化及在水产养殖中的应用[D]. 淮安: 淮阴工学院, 2020. |
54 | 米少辉,许嘉芮,李军涛,等.常见益生菌在鱼虾类养殖中的应用研究进展[J]. 河北渔业, 2021(2): 39-44. |
55 | 郭强. 生物修复技术在水环境治理中的应用与发展[J]. 中国高新科技, 2021(15): 93-94. |
56 | LISCH D. Mutator and mule transposons[J/OL]. Microbiol. Spectr., 2015, 3(2): Mdn a3-0032-2014[2015-03-26]. . |
57 | 曾明颖,顾凡强,王仁睿.不同水生植物种植模式对富营养化水体的净化效果研究[J]. 四川农业大学学报, 2021, 39(05): 674-680. |
58 | 肖霞,赵娟娟.养殖滤食性鱼类对大水面水体净化作用的探讨[J]. 河南水产, 2021(3): 1-2. |
[1] | 郝捷, 季嫱, 李力群, 郑超, 吴娜, 吴晗, 李选文, 孙志康. 生物酶和微生物技术改善烟叶香气的研究进展[J]. 生物技术进展, 2022, 12(6): 817-824. |
[2] | 李力群, 孙志康, 郝捷, 季嫱, 李选文, 吴晗, 吴娜, 郑超, 杨婧. 果胶酶生产及工业应用进展[J]. 生物技术进展, 2022, 12(4): 549-558. |
[3] | 李伟, 王冲, 刘嗣嘉, 杨敏一, 张云平. 宏基因组学技术在痤疮研究中的应用进展[J]. 生物技术进展, 2021, 11(6): 694-699. |
[4] | 赵冬雪,刘璐,穆迎春,韩刚,张洪玉,房洪博,阮志勇4,宋金龙. 磺胺甲恶唑高效降解菌群的多样性分析和降解微生物的分离表征[J]. 生物技术进展, 2021, 11(2): 196-203. |
[5] | 玄琦月,韩雪,付英梅,. 肺外结核病微生物学诊断方法的研究和应用进展[J]. 生物技术进展, 2021, 11(1): 47-53. |
[6] | 张兆昆,,周文学,李永丽,,胡建华,,刘占英,. 核黄素发酵菌种改造研究进展[J]. 生物技术进展, 2021, 11(1): 54-60. |
[7] | 樊英,于晓清,李乐,王晓璐,叶海斌,胡发文,刁菁,刘洪军. 基于16S rRNA高通量测序分析大泷六线鱼表皮粘液及肠道内容物微生物多样性[J]. 生物技术进展, 2021, 11(1): 79-90. |
[8] | 陈硕,高佳奇,王迪,龙艳,李亮,张晓. DNA四面体纳米结构及其在生物技术领域的应用进展[J]. 生物技术进展, 2020, 10(6): 661-667. |
[9] | 徐欢欢,张红兵,李会宣,李磊. 常压室温等离子体技术在微生物诱变中的应用进展[J]. 生物技术进展, 2020, 10(4): 358-362. |
[10] | 李宇邦,吴军林,李曼莎. 微生物发酵处理药食同源植物研究进展[J]. 生物技术进展, 2019, 9(5): 461-466. |
[11] | 马永凯,陶宏兵,李文茹,谢小保,施庆珊,周少璐. 水性涂料中微生物群落结构及其多样性分析[J]. 生物技术进展, 2019, 9(4): 396-403. |
[12] | 刘丽辉,蒋慧敏,王佩旋,唐小钰,彭桂香,谭志远. 野生稻内生固氮菌多样性研究进展[J]. 生物技术进展, 2017, 7(6): 567-579. |
[13] | 袁林喜,张影. 硒超积累植物壶瓶碎米荠的根际微生物特征研究[J]. 生物技术进展, 2017, 7(5): 395-401. |
[14] | 付丽娜,魏兰芳,王震铄,刘峰,李淼,姬广海. 三七根际微生物群落组成及多样性研究[J]. 生物技术进展, 2017, 7(3): 211-216. |
[15] | 罗胜南,尚润东,靳永胜. 我国微生物法去除氨氮研究进展[J]. 生物技术进展, 2017, 7(2): 155-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部