1 |
KARIO K, OKURA A, HOSHIDE S, et al.. The WHO global report 2023 on hypertension warning the emerging hypertension burden in globe and its treatment strategy[J]. Hypertens. Res., 2024, 47(5): 1099-1102.
|
2 |
中国高血压防治指南修订委员会,高血压联盟(中国,中国医疗保健国际交流促进会高血压病学分会,等.中国高血压防治指南(2024年修订版)[J].中华高血压杂志(中英文),2024,32(7):603-700.
|
|
China Hypertension Prevention and Treatment Guidelines Revision Committee, Chinese Hypertension League, Hypertension Branch of China Health Care International Exchange Promotion Association, et al.. Guidelines for prevention and treatment of hypertension in China (revised in 2024)[J]. Chin. J. Hypertens., 2024, 32(7): 603-700.
|
3 |
LANDSBERG L, ARONNE L J, BEILIN L J, et al.. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of the obesity society and the American society of hypertension[J]. J. Clin. Hypertens., 2013, 15(1): 14-33.
|
4 |
KANNEL W B, BRAND N, SKINNER J J, et al.. The relation of adiposity to blood pressure and development of hypertension. The Framingham study[J]. Ann. Intern. Med., 1967, 67(1): 48-59.
|
5 |
孙宁玲.《肥胖相关性高血压管理的中国专家共识》的关键点及亮点[J].中华高血压杂志(中英文),2016,24(12):1107-1109.
|
|
SUN N L. Key points and highlights of China expert consensus on obesity-related hypertension management[J]. Chin. J. Hypertens., 2016, 24(12): 1107-1109.
|
6 |
ZHU Z, XIONG S, LIU D. The gastrointestinal tract: an initial organ of metabolic hypertension?[J]. Cell. Physiol. Biochem., 2016, 38(5): 1681-1694.
|
7 |
LIM C T, KOLA B, KORBONITS M. The ghrelin/GOAT/GHS-R system and energy metabolism[J]. Rev. Endocr. Metab. Disord., 2011, 12(3): 173-186.
|
8 |
FUJIMURA K, WAKINO S, MINAKUCHI H, et al.. Ghrelin protects against renal damages induced by angiotensin-Ⅱ via an antioxidative stress mechanism in mice[J/OL]. PLoS ONE, 2014, 9(4): e94373[2025-04-08]. .
|
9 |
CHEN Y, ASICO L D, ZHENG S, et al.. Gastrin and D1 dopamine receptor interact to induce natriuresis and diuresis[J]. Hypertension, 2013, 62(5): 927-933.
|
10 |
JIANG X, LIU Y, ZHANG X Y, et al.. Intestinal gastrin/CCKBR (cholecystokinin B receptor) ameliorates salt-sensitive hypertension by inhibiting intestinal Na(+)/H(+) exchanger 3 activity through a PKC (protein kinase C)-mediated NHERF1 and NHERF2 pathway[J]. Hypertension, 2022, 79(8): 1668-1679.
|
11 |
JASTREBOFF A M, KUSHNER R F. New frontiers in obesity treatment: GLP-1 and nascent nutrient-stimulated hormone-based therapeutics[J]. Annu. Rev. Med., 2023, 74: 125-139.
|
12 |
LI Q X, GAO H, GUO Y X, et al.. GLP-1 and underlying beneficial actions in Alzheimer's disease, hypertension, and NASH[J/OL]. Front. Endocrinol., 2021, 12: 721198[2025-04-08]. .
|
13 |
YU M, MORENO C, HOAGLAND K M, et al.. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats[J]. J. Hypertens., 2003, 21(6): 1125-1135.
|
14 |
MARTINS F L, BAILEY M A, GIRARDI A C C. Endogenous activation of glucagon-like peptide-1 receptor contributes to blood pressure control: role of proximal tubule Na(+)/H(+) exchanger isoform 3, renal angiotensin Ⅱ, and insulin sensitivity[J]. Hypertension, 2020, 76(3): 839-848.
|
15 |
HTIKE Z Z, ZACCARDI F, PAPAMARGARITIS D, et al.. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a systematic review and mixed-treatment comparison analysis[J]. Diabetes Obes. Metab., 2017, 19(4): 524-536.
|
16 |
WANG C, GONG B, SUN L, et al.. Evolution of peptide YY analogs for the management of type 2 diabetes and obesity[J/OL]. Bioorg. Chem., 2023, 140: 106808[2025-04-08]. .
|
17 |
SANTORO N, DEL GIUDICE E M, GRANDONE A, et al.. Y2 receptor gene variants reduce the risk of hypertension in obese children and adolescents[J]. J. Hypertens., 2008, 26(8): 1590-1594.
|
18 |
BISCHOFF A, MICHEL M C. Renal effects of neuropeptide Y[J]. Pflugers Arch., 1998, 435(4): 443-453.
|
19 |
FÄNDRIKS L. Roles of the gut in the metabolic syndrome: an overview[J]. J. Intern. Med., 2017, 281(4): 319-336.
|
20 |
KIM M, HEO G, KIM S Y. Neural signalling of gut mechanosensation in ingestive and digestive processes[J]. Nat. Rev. Neurosci., 2022, 23(3): 135-156.
|
21 |
HALLERSUND P, SJÖSTRÖM L, OLBERS T, et al.. Gastric bypass surgery is followed by lowered blood pressure and increased diuresis - long term results from the Swedish Obese Subjects (SOS) study[J/OL]. PLoS ONE, 2012, 7(11): e49696[2025-04-08]. .
|
22 |
DANIEL H, ZIETEK T. Taste and move: glucose and peptide transporters in the gastrointestinal tract[J]. Exp. Physiol., 2015, 100(12): 1441-1450.
|
23 |
SPENCER A G, LABONTE E D, ROSENBAUM D P, et al.. Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans[J/OL]. Sci. Transl. Med., 2014, 6(227): 227ra36[2025-04-08]. .
|
24 |
NAKAMURA T, KURIHARA I, KOBAYASHI S, et al.. Intestinal mineralocorticoid receptor contributes to epithelial sodium channel-mediated intestinal sodium absorption and blood pressure regulation[J/OL]. J. Am. Heart Assoc., 2018, 7(13): e008259[2025-04-08]. .
|
25 |
VANCAMELBEKE M, VERMEIRE S. The intestinal barrier: a fundamental role in health and disease[J]. Expert Rev. Gastroenterol. Hepatol., 2017, 11(9): 821-834.
|
26 |
BISCHOFF S C, BARBARA G, BUURMAN W, et al.. Intestinal permeability: a new target for disease prevention and therapy[J/OL]. BMC Gastroenterol., 2014, 14: 189[2025-04-08]. .
|
27 |
LEWIS C V, TAYLOR W R. Intestinal barrier dysfunction as a therapeutic target for cardiovascular disease[J]. Am. J. Physiol. Heart Circ. Physiol., 2020, 319(6): 1227-1233.
|
28 |
SHEN L, AO L, XU H, et al.. Poor short-term glycemic control in patients with type 2 diabetes impairs the intestinal mucosal barrier: a prospective, single-center, observational study[J/OL]. BMC Endocr. Disord., 2019, 19(1): 29[2025-04-08]. .
|
29 |
KAWANO Y, NAKAE J, WATANABE N, et al.. Colonic pro-inflammatory macrophages cause insulin resistance in an intestinal Ccl2/Ccr2-dependent manner[J]. Cell Metab., 2016, 24(2): 295-310.
|
30 |
LU P, SODHI C P, YAMAGUCHI Y, et al.. Intestinal epithelial Toll-like receptor 4 prevents metabolic syndrome by regulating interactions between microbes and intestinal epithelial cells in mice[J]. Mucosal Immunol., 2018, 11(3): 727-740.
|
31 |
EVERARD A, GEURTS L, CAESAR R, et al.. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status[J/OL]. Nat. Commun., 2014, 5: 5648[2025-04-08]. .
|
32 |
SANTISTEBAN M M, QI Y, ZUBCEVIC J, et al.. Hypertension-linked pathophysiological alterations in the gut[J]. Circ. Res., 2017, 120(2): 312-323.
|
33 |
KIM S, GOEL R, KUMAR A, et al.. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure[J]. Clin. Sci., 2018, 132(6): 701-718.
|
34 |
BEISNER J, FILIPE ROSA L, KADEN-VOLYNETS V, et al.. Prebiotic inulin and sodium butyrate attenuate obesity-induced intestinal barrier dysfunction by induction of antimicrobial peptides[J/OL]. Front. Immunol., 2021, 12: 678360[2025-04-08]. .
|
35 |
YANG T, AQUINO V, LOBATON G O, et al.. Sustained captopril-induced reduction in blood pressure is associated with alterations in gut-brain axis in the spontaneously hypertensive rat[J/OL]. J. Am. Heart Assoc., 2019, 8(4): e010721[2025-04-08]. .
|
36 |
LI J, ZHAO F, WANG Y, et al.. Gut microbiota dysbiosis contributes to the development of hypertension[J/OL]. Microbiome, 2017, 5(1): 14[2025-04-08]. .
|
37 |
XU Z, JIANG W, HUANG W, et al.. Gut microbiota in patients with obesity and metabolic disorders-a systematic review[J/OL]. Genes Nutr., 2022, 17(1): 2[2025-04-08]. .
|
38 |
LIU R, HONG J, XU X, et al.. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention[J]. Nat. Med., 2017, 23(7): 859-868.
|
39 |
AGUIRRE-GARCÍA M M, AMEDEI A, HERNÁNDEZ-RUIZ P, et al.. Cytokine and microbiota profiles in obesity-related hypertension patients[J/OL]. Front. Cell. Infect. Microbiol., 2023, 13: 1325261[2025-04-08]. .
|
40 |
JOSE P A, RAJ D. Gut microbiota in hypertension[J]. Curr. Opin. Nephrol. Hypertens., 2015, 24(5): 403-409.
|
41 |
XU J, MOORE B N, PLUZNICK J L. Short-chain fatty acid receptors and blood pressure regulation: council on hypertension mid-career award for research excellence 2021[J]. Hypertension, 2022, 79(10): 2127-2137.
|
42 |
WANG L, ZHU Q, LU A, et al.. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system[J]. J. Hypertens., 2017, 35(9): 1899-1908.
|
43 |
张桐萃,姚若瑾,王超,等.葛根素对小鼠非酒精性脂肪肝保护作用的研究[J].生物技术进展,2024,14(3):480-485.
|
|
ZHANG T C, YAO R J, WANG C, et al.. Protection of nonalcoholic fatty liver in mice by puerarin[J]. Curr. Biotechnol., 2024, 14(3): 480-485.
|
44 |
MARQUES F Z, NELSON E, CHU P Y, et al.. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice[J]. Circulation, 2017, 135(10): 964-977.
|
45 |
LIU Y, ZHONG X, LIN S, et al.. Limosilactobacillus reuteri and caffeoylquinic acid synergistically promote adipose browning and ameliorate obesity-associated disorders[J/OL]. Microbiome, 2022, 10(1): 226[2025-04-08]. .
|
46 |
JIANG S, SHUI Y, CUI Y, et al.. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin Ⅱ-induced hypertension[J/OL]. Redox Biol., 2021, 46: 102115[2025-04-08]. .
|
47 |
BRUNT V E, CASSO A G, GIOSCIA-RYAN R A, et al.. Gut microbiome-derived metabolite trimethylamine N-oxide induces aortic stiffening and increases systolic blood pressure with aging in mice and humans[J]. Hypertension, 2021, 78(2): 499-511.
|
48 |
ZHU Q, ZHU Y, LIU Y, et al.. Moderation of gut microbiota and bile acid metabolism by chlorogenic acid improves high-fructose-induced salt-sensitive hypertension in mice[J]. Food Funct., 2022, 13(13): 6987-6999.
|