1 |
GESCHWIND D H, FLINT J. Genetics and genomics of psychiatric disease[J]. Science, 2015, 349(6255): 1489-1494.
|
2 |
ANTAKI D, GUEVARA J, MAIHOFER A X, et al.. A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex[J]. Nat. Genet., 2022, 54(9): 1284-1292.
|
3 |
NAKAMURA T, UEDA J, MIZUNO S, et al.. Topologically associating domains define the impact of de novo promoter variants on autism spectrum disorder risk[J/OL]. Cell Genom., 2024, 4(2): 100488[2025-04-09]. .
|
4 |
CARBALLO-PACORET P, CARRACEDO A, RODRIGUEZ-FONTENLA C. Unraveling the three-dimensional (3D) genome architecture in neurodevelopmental disorders (NDDs)[J]. Neurogenetics, 2024, 25(4): 293-305.
|
5 |
MALACHOWSKI T, CHANDRADOSS K R, BOYA R, et al.. Spatially coordinated heterochromatinization of long synaptic genes in fragile X syndrome[J]. Cell, 2023, 186(26): 5840-5858.
|
6 |
SANDIN S, LICHTENSTEIN P, KUJA-HALKOLA R, et al.. The heritability of autism spectrum disorder[J]. JAMA, 2017, 318(12): 1182-1184.
|
7 |
KAAIJ L J T, MOHN F, VAN DER WEIDE R H, et al.. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse[J]. Cell, 2019, 178(6): 1437-1451.
|
8 |
KIM I B, LEE T, LEE J, et al.. Non-coding de novo mutations in chromatin interactions are implicated in autism spectrum disorder[J]. Mol. Psychiatr., 2022, 27(11): 4680-4694.
|
9 |
HONYBUN E, COCKLE E, MALPAS C B, et al.. Neurodevelopmental and functional outcomes following in utero exposure to antiseizure medication: a systematic review[J/OL]. Neurology, 2024, 102(8): e209175[2025-04-09]. .
|
10 |
RUZZO E K, PÉREZ-CANO L, JUNG J Y, et al.. Inherited and de novo genetic risk for autism impacts shared networks[J]. Cell, 2019, 178(4): 850-866.
|
11 |
COHEN S, GABEL H W, HEMBERG M, et al.. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function[J]. Neuron, 2011, 72(1): 72-85.
|
12 |
BERNIER R, GOLZIO C, XIONG B, et al.. Disruptive CHD8 mutations define a subtype of autism early in development[J]. Cell, 2014, 158(2): 263-276.
|
13 |
CIRNIGLIARO M, CHANG T S, ARTEAGA S A, et al.. The contributions of rare inherited and polygenic risk to ASD in multiplex families[J/OL]. Proc. Natl. Acad. Sci. USA, 2023, 120(31): e2215632120[2025-04-09]. .
|
14 |
GROTZINGER A D, MALLARD T T, AKINGBUWA W A, et al.. Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis[J]. Nat. Genet., 2022, 54(5): 548-559.
|
15 |
AN J Y, LIN K, ZHU L, et al.. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder[J/OL]. Science, 2018, 362(6420): eaat6576[2025-04-09]. .
|
16 |
TROST B, THIRUVAHINDRAPURAM B, CHAN A J S, et al.. Genomic architecture of autism from comprehensive whole-genome sequence annotation[J]. Cell, 2022, 185(23): 4409-4427.
|
17 |
FELICIANO P, ZHOU X, WANG T, et al.. eP121: integrating de novo and inherited variants in over 42607 autism cases identifies variants in new moderate risk genes[J/OL]. Genet. Med., 2022, 24(3): S76[2025-04-09]. .
|
18 |
TURNER T N, COE B P, DICKEL D E, et al.. Genomic patterns of de novo mutation in simplex autism[J]. Cell, 2017, 171(3): 710-722.
|
19 |
DU Z, ZHENG H, HUANG B, et al.. Allelic reprogramming of 3D chromatin architecture during early mammalian development[J]. Nature, 2017, 547(7662): 232-235.
|
20 |
ZHONG H, ZHANG J, LU Y, et al.. 3D genome perspective on cell fate determination, regenerationorgan, and diseases[J/OL]. Cell Prolif., 2023, 56(5): e13482[2025-04-09]. .
|
21 |
FUDENBERG G, IMAKAEV M, LU C, et al.. Formation of chromosomal domains by loop extrusion[J]. Cell Rep., 2016, 15(9): 2038-2049.
|
22 |
TOROSIN N S, ANAND A, GOLLA T R, et al.. 3D genome evolution and reorganization in the Drosophila melanogaster species group[J/OL]. PLoS Genet., 2020, 16(12): e1009229[2025-04-09]. .
|
23 |
ZAGIROVA D, KONONKOVA A, VAULIN N, et al.. From compartments to loops: understanding the unique chromatin organization in neuronal cells[J/OL]. Epigenet. Chromatin, 2024, 17(1): 18[2025-04-09]. .
|
24 |
PHILLIPS-CREMINS J E, SAURIA M E G, SANYAL A, et al.. Architectural protein subclasses shape 3D organization of genomes during lineage commitment[J]. Cell, 2013, 153(6): 1281-1295.
|
25 |
ZUIN J, DIXON J R, VAN DER REIJDEN M I J A, et al.. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells[J]. Proc. Natl. Acad. Sci. USA, 2014, 111(3): 996-1001.
|
26 |
SZABO Q, BANTIGNIES F, CAVALLI G. Principles of genome folding into topologically associating domains[J/OL]. Sci. Adv., 2019, 5(4): eaaw1668[2025-04-09]. .
|
27 |
KREFTING J, ANDRADE-NAVARRO M A, IBN-SALEM J. Evolutionary stability of topologically associating domains is associated with conserved gene regulation[J/OL]. BMC Biol., 2018, 16(1): 87[2025-04-09]. .
|
28 |
MCARTHUR E, CAPRA J A. Topologically associating domain boundaries that are stable across diverse cell types are evolutionarily constrained and enriched for heritability[J]. Am. J. Hum. Genet., 2021, 108(2): 269-283.
|
29 |
ZHANG D, HUANG P, SHARMA M, et al.. Alteration of genome folding via contact domain boundary insertion[J]. Nat. Genet., 2020, 52(10): 1076-1087.
|
30 |
NARENDRA V, ROCHA P P, AN D, et al.. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation[J]. Science, 2015, 347(6225): 1017-1021.
|
31 |
DE RUBEIS S, HE X, GOLDBERG A P, et al.. Synaptic, transcriptional and chromatin genes disrupted in autism[J]. Nature, 2014, 515(7526): 209-215.
|
32 |
LU H, YU D, HANSEN A S, et al.. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase Ⅱ[J]. Nature, 2018, 558(7709): 318-323.
|
33 |
SONG Y, LIANG Z, ZHANG J, et al.. CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming[J/OL]. Cell Rep., 2022, 39(1): 110626[2025-04-09]. .
|
34 |
ANDREY G, MUNDLOS S. The three-dimensional genome: regulating gene expression during pluripotency and development[J]. Development, 2017, 144(20): 3646-3658.
|
35 |
OH S, SHAO J, MITRA J, et al.. Enhancer release and retargeting activates disease-susceptibility genes[J]. Nature, 2021, 595(7869): 735-740.
|
36 |
MAKOWSKI C, VAN DER MEER D, DONG W, et al.. Discovery of genomic loci of the human cerebral cortex using genetically informed brain atlases[J]. Science, 2022, 375(6580): 522-528.
|
37 |
WANG J, YU H, MA Q, et al.. Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions[J]. Cell Stem Cell, 2021, 28(10): 1868-1883.
|
38 |
KRIJGER P H L, DI STEFANO B, DE WIT E, et al.. Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming[J]. Cell Stem Cell, 2016, 18(5): 597-610.
|
39 |
BEAGAN J A, PASTUZYN E D, FERNANDEZ L R, et al.. Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression[J]. Nat. Neurosci., 2020, 23(6): 707-717.
|
40 |
WILFERT A B, TURNER T N, MURALI S C, et al.. Recent ultra-rare inherited variants implicate new autism candidate risk genes[J]. Nat. Genet., 2021, 53(8): 1125-1134.
|
41 |
ANANIA C, ACEMEL R D, JEDAMZICK J, et al.. In vivo dissection of a clustered-CTCF domain boundary reveals developmental principles of regulatory insulation[J]. Nat. Genet., 2022, 54(7): 1026-1036.
|
42 |
HUYNH L, HORMOZDIARI F. TAD fusion score: discovery and ranking the contribution of deletions to genome structure[J/OL]. Genome Biol., 2019, 20(1): 60[2025-04-09]. .
|
43 |
JERKOVIC I, CAVALLI G. Understanding 3D genome organization by multidisciplinary methods[J]. Nat. Rev. Mol. Cell Biol., 2021, 22(8): 511-528.
|
44 |
MOHANTA T K, MISHRA A K, AL-HARRASI A. The 3D genome: from structure to function[J/OL]. Int. J. Mol. Sci., 2021, 22(21): 11585[2025-04-09]. .
|
45 |
LIEBERMAN-AIDEN E, VAN BERKUM N L, WILLIAMS L, et al.. Comprehensive mapping of long-range interactions reveals folding principles of the human genome[J]. Science, 2009, 326(5950): 289-293.
|
46 |
MOTA-GÓMEZ I, LUPIÁÑEZ D G. A (3D-nuclear) space odyssey: making sense of Hi-C maps[J/OL]. Genes, 2019, 10(6): 415[2025-04-09]. .
|
47 |
RAO S S P, HUNTLEY M H, DURAND N C, et al.. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping[J]. Cell, 2014, 159(7): 1665-1680.
|
48 |
SIKORSKA N, SEXTON T. Defining functionally relevant spatial chromatin domains: it is a TAD complicated[J]. J. Mol. Biol., 2020, 432(3): 653-664.
|
49 |
ZHANG S, HE Y, LIU H, et al.. regBase: whole genome base-wise aggregation and functional prediction for human non-coding regulatory variants[J/OL]. Nucleic Acids Res., 2019, 47(21): e134[2025-04-09]. .
|
50 |
WANG Z, ZHAO G, LI B, et al.. Performance comparison of computational methods for the prediction of the function and pathogenicity of non-coding variants[J]. Genom. Proteom. Bioinform., 2023, 21(3): 649-661.
|
51 |
HE Z, LIU L, BELLOY M E, et al.. Ghost knockoff inference empowers identification of putative causal variants in genome-wide association studies[J/OL]. Nat. Commun., 2022, 13(1): 7209[2025-04-09]. .
|
52 |
HE Z, LIU L, WANG C, et al.. Identification of putative causal loci in whole-genome sequencing data via knockoff statistics[J/OL]. Nat. Commun., 2021, 12(1): 3152[2025-04-09]. .
|