生物技术进展 ›› 2025, Vol. 15 ›› Issue (3): 372-379.DOI: 10.19586/j.2095-2341.2025.0001
吕婉婉1,2(), 郑林2(
), 庞红盈2, 高宏波1(
), 王宏芝2(
)
收稿日期:
2025-01-03
接受日期:
2025-03-10
出版日期:
2025-05-25
发布日期:
2025-07-01
通讯作者:
高宏波,王宏芝
作者简介:
吕婉婉E-mail: 2517991628@qq.com;基金资助:
Wanwan LYU1,2(), Lin ZHENG2(
), Hongying PANG2, Hongbo GAO1(
), Hongzhi WANG2(
)
Received:
2025-01-03
Accepted:
2025-03-10
Online:
2025-05-25
Published:
2025-07-01
Contact:
Hongbo GAO,Hongzhi WANG
摘要:
白杨(Populus sect. Leuce)是我国广泛种植的重要杨树品种,但因扦插生根难,限制了其优良无性系在育种中的应用和良种的有效规模化繁育。根蘖苗具有生长速度快、成活率高的优势,已成为白杨派良种无性繁殖和造林的重要技术手段。目前,杨树根蘖发生的分子机理尚不明确。综述总结了杨树根蘖苗发生的形态学特征和影响根蘖发生的因素,探讨了根蘖苗发生可能涉及的分子信号通路与基因调控网络,不仅为制定有利于提高根蘖苗无性繁殖效率的精准化栽培管理方案提供了理论支撑,也为根蘖发生分子调控机制解析提供了新的思路,对于推进林木遗传改良和良种繁育具有重要意义。
中图分类号:
吕婉婉, 郑林, 庞红盈, 高宏波, 王宏芝. 杨树根蘖苗发生机理研究进展[J]. 生物技术进展, 2025, 15(3): 372-379.
Wanwan LYU, Lin ZHENG, Hongying PANG, Hongbo GAO, Hongzhi WANG. Research Advances on the Mechanism of Root Suckering in Poplar[J]. Current Biotechnology, 2025, 15(3): 372-379.
图 1 根蘖茎顶端分生组织形成过程[10]A:木栓形成层细胞分裂形成干细胞群;B~C:原形成层带已开始分化的根蘖原基;D:根蘖SAM形成;PS—原形成层带(procambial strand)
Fig. 1 Formation of shoot apical meristem (SAM) of suckers[10]
图3 根不定芽从头再生模式图A:拟南芥离体根组织培养过程中,不定芽发生起源于中柱鞘细胞,愈伤组织诱导阶段形成的形状规则的细胞团突起类似于侧根原基,进一步发育形成茎顶端分生组织,该过程受生长素和细胞分裂素信号协同调控[53,57-59];B:杨树根蘖苗 (不定芽) 起源于木栓形成层细胞[14],但具体影响机制有待进一步研究。
Fig. 3 Schematic diagram of de novo shoot regeneration from roots
1 | 席本野.杨树根系形态、分布、动态特征及其吸水特性[J].北京林业大学学报,2019,41(12):37-49. |
XI B Y. Morphology, distribution, dynamic characteristics of poplar roots and its water uptake habits[J]. J. Beijing For. Univ., 2019, 41(12): 37-49. | |
2 | 康向阳.新一轮毛白杨遗传改良策略的思考和实践[J].北京林业大学学报,2016,38(7):1-8. |
KANG X Y. Thinking and practices for strategy on a new round genetic improvement of Populus tomentosa [J]. J. Beijing For. Univ., 2016, 38(7): 1-8. | |
3 | 李占民,王泽民,王志彦,等.河北平原速生杨根蘖林培育技术试验研究[J].河北林业科技,2013(3):3-5. |
LI Z M, WANG Z M, WANG Z Y, et al.. Experimental study on cultivation techniques of fast-growing poplar root-tiller forest in Hebei plain[J]. J. Hebei For. Sci. Technol., 2013(3): 3-5. | |
4 | 杨海潮.速生杨根蘖林培育技术[J].现代农村科技,2021(7):39-40. |
5 | 方升佐,徐锡增,吕士行,等.杨树萌芽更新及持续生产力[J].南京林业大学学报,2000,24(4):43-48. |
FANG S Z, XU X Z, LYU S X, et al.. Coppicing techniques of poplars and sustainable production[J]. J. Nanjing For. Univ., 2000, 24(4): 43-48. | |
6 | 王力刚,温丽霞,赵岭,等.半干旱风沙区杨树林带萌蘖更新综合技术[J].防护林科技,2009(6):110-112. |
WANG L G, WEN L X, ZHAO L, et al.. Comprehensive matching technology for sprouting & rejuvenation of poplar plantation in semiarid sandy area[J]. Prot. For. Sci. Technol., 2009(6): 110-112. | |
7 | FREY B R, LIEFFERS V J, LANDHÄUSSER S M, et al.. An analysis of sucker regeneration of trembling aspen[J]. Can. J. For. Res., 2003, 33(7): 1169-1179. |
8 | 李霞,宋云平,曹大学,等.促进山杨天然更新技术[J].吉林林业科技,2000,29(6):41-44. |
LI X, SONG Y P, CAO D X, et al.. Accelerating measures on natural regeneration of Populus davidiana dode[J]. J. Jilin For. Sci. Technol., 2000, 29(6): 41-44. | |
9 | 朱之悌,张志毅,赵勇刚.毛白杨优树快速繁殖方法的研究[J].北京林业大学学报,1986,8(4):1-17. |
ZHU Z T, ZHANG Z Y, ZHAO Y G. Studies on a rapid method for vegetative propagation of popuius tomentosa[J]. J. Beijing For. Univ., 1986, 8(4): 1-17. | |
10 | SCHIER G A. Origin and development of aspen root suckers[J]. Can. J. For. Res., 1973, 3(1): 45-53. |
11 | 王铁梅.苜蓿根蘖性状发生及其调节机制研究[D].北京:北京林业大学,2008. |
12 | HEINRICHS D H. Genetic variability within and correlations between characters of alfalfa polycross progenies[J]. Can. J. Genet. Cytol., 1964, 6(4): 522-528. |
13 | POLEGRI L, PECETTI L, PIANO E, et al.. Identification of AFLPs co-segregating with the creeping-rootedness trait in lucerne (Medicago sativa L. complex)[J]. Mol. Breed., 2011, 28(1): 91-103. |
14 | SCHIER G A, ZASADA J C. Role of carbohydrate reserves in the development of root suckers in Populustremuloides [J]. Can. J. For. Res., 1973, 3(2): 243-250. |
15 | 曹德昌,李景文,陈维强,等.额济纳绿洲不同林隙胡杨根蘖的发生特征[J].生态学报,2009,29(4):1954-1961. |
CAO D C, LI J W, CHEN W Q, et al.. Development and growth of root suckers of Populus euphratica in different forest gaps in Ejina oasis [J]. Acta Ecol. Sin., 2009, 29(4): 1954-1961. | |
16 | 王子康,焦阿永,凌红波,等.不同灌溉模式下胡杨断根处理根蘖繁殖特征[J].干旱区研究,2022,39(4):1133-1142. |
WANG Z K, JIAO A Y, LING H B, et al.. Characteristics of Populus euphratica root under various irrigation modes[J]. Arid Zone Res., 2022, 39(4): 1133-1142. | |
17 | MAINI J S, HORTON K W. Vegetative propagation of Populus spp. i. influence of temperature on formation and initial growth of aspen suckers[J]. Can. J. Bot., 1966, 44(9): 1183-1189. |
18 | GIFFORD G. The influence of growth media, temperatures, and light intensities on aspen root and top growth[J]. Rev. Bras. Enferm., 1967, 27(2): 18-24. |
19 | SCHIER G A, JONES J R, WINOKUR R P. Vegetative regeneration in aspen[C]. Wetl. Ecol. Manag., 1985. |
20 | HUNGERFORD R D. Soil temperatures and suckering in burned and unburned aspen stands[M]. United States of America: Department of Agriculture, Forest Service, Intermountain Research Station, 1988. |
21 | BARTOS D L, MUEGGLER W F. Early succession in aspen communities following fire in western Wyoming[J/OL]. J. Range Manag., 1981, 34(4): 315[2025-03-10]. . |
22 | BROWN J K, DEBYLE N V. Fire damage, mortality, and suckering in aspen[J]. Can. J. For. Res., 1987, 17(9): 1100-1109. |
23 | CLEVE K V, DYRNESS C T. Effects of forest-floor disturbance on soil-solution nutrient composition in a black spruce ecosystem[J]. Can. J. For. Res., 1983, 13(5): 894-902. |
24 | FARMER R E. Aspen root sucker formation and apical dominance[J]. For. Sci., 1962, 8(4): 403-410. |
25 | ELIASSON L. Growth regulators in Populus tremula [J]. Physiol. Plant, 1971, 25(1): 118-121. |
26 | STENEKER G A. The size of trembling aspen (Populus tremuloides michx.) clones in Manitoba[J]. Can. J. For. Res., 1973, 3(4): 472-478. |
27 | LUSCHNIG C, FRIML J. Over 25 years of decrypting PIN-mediated plant development[J/OL]. Nat. Commun., 2024, 15(1): 9904[2025-03-10]. . |
28 | UNG K L, WINKLER M, SCHULZ L, et al.. Structures and mechanism of the plant PIN-FORMED auxin transporter[J]. Nature, 2022, 609(7927): 605-610. |
29 | ZHANG K, NOVAK O, WEI Z, et al.. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins[J/OL]. Nat. Commun., 2014, 5: 3274[2025-03-06]. . |
30 | BEVERIDGE C A, MURFET I C, KERHOAS L, et al.. The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4 [J]. Plant J., 1997, 11(2): 339-345. |
31 | SCHIER G A. Physiological research on adventitious shoot development in aspen roots[M]. United States of America: Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1981. |
32 | SCHIER G A. Promotion of sucker development on Populustremuloides root cuttings by an antiauxin[J]. Can. J. For. Res., 1975, 5(2): 338-340. |
33 | LI W, ZHAI L, STRAUSS S H, et al.. Transgenic reduction of cytokinin levels in roots inhibits root-sprouting in Populus [J]. Plant Physiol., 2019, 180(4): 1788-1792. |
34 | GUO L, SHAO X, XUE P, et al.. Root sprouting ability and growth dynamics of the rootsuckers of Emmenopterys henryi, a rare and endangered plant endemic to China[J]. For. Ecol. Manag., 2017, 389: 35-45. |
35 | ATTA R, LAURENS L, BOUCHERON-DUBUISSON E, et al.. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro [J]. Plant J., 2009, 57(4): 626-644. |
36 | WANG X, MÄKILÄ R, MÄHÖNEN A P. From procambium patterning to cambium activation and maintenance in the Arabidopsis root[J/OL]. Curr. Opin. Plant Biol., 2023, 75: 102404[2025-03-10]. . |
37 | CKURSHUMOVA W, SMIRNOVA T, MARCOS D, et al.. Irrepressible MONOPTEROS/ARF5 promotes de novo shoot formation[J]. New Phytol., 2014, 204(3): 556-566. |
38 | ZHAI N, XU L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration[J]. Nat. Plants, 2021, 7(11): 1453-1460. |
39 | OKADA K, UEDA J, KOMAKI M K, et al.. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation[J]. Plant Cell, 1991, 3(7): 677-684. |
40 | REINHARDT D, MANDEL T, KUHLEMEIER C. Auxin regulates the initiation and radial position of plant lateral organs[J]. Plant Cell, 2000, 12(4): 507-518. |
41 | CARDOSO H, PEIXE A, BELLINI C, et al.. Editorial: advances on the biological mechanisms involved in adventitious root formation: from signaling to morphogenesis[J/OL]. Plant Sci., 2022, 13: 867651[2025-03-10]. . |
42 | SUGIMOTO K, JIAO Y, MEYEROWITZ E M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway[J]. Dev. Cell, 2010, 18(3): 463-471. |
43 | IKEUCHI M, SUGIMOTO K, IWASE A. Plant callus: mechanisms of induction and repression[J]. Plant Cell, 2013, 25(9): 3159-3173. |
44 | FAN M, XU C, XU K, et al.. Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration[J]. Cell Res., 2012, 22(7): 1169-1180. |
45 | AIDA M, BEIS D, HEIDSTRA R, et al.. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche[J]. Cell, 2004, 119(1): 109-120. |
46 | GALINHA C, HOFHUIS H, LUIJTEN M, et al.. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development[J]. Nature, 2007, 449(7165): 1053-1057. |
47 | KAREEM A, DURGAPRASAD K, SUGIMOTO K, et al.. PLETHORA genes control regeneration by a two-step mechanism[J]. Curr. Biol., 2015, 25(8): 1017-1030. |
48 | CHE P, LALL S, HOWELL S H. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture[J]. Planta, 2007, 226(5): 1183-1194. |
49 | LIU J, SHENG L, XU Y, et al.. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis [J]. Plant Cell, 2014, 26(3): 1081-1093. |
50 | LIU J, HU X, QIN P, et al.. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture[J]. Plant Cell Physiol., 2018, 59(4): 739-748. |
51 | LIU B, ZHANG J, YANG Z, et al.. PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar[J]. Plant Mol. Biol., 2018, 98(4): 389-406. |
52 | CHATFIELD S P, CAPRON R, SEVERINO A, et al.. Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems[J]. Plant J., 2013, 73(5): 798-813. |
53 | ZHANG T Q, LIAN H, ZHOU C M, et al.. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration[J]. Plant Cell, 2017, 29(5): 1073-1087. |
54 | CHEN C, HU Y, IKEUCHI M, et al.. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications[J]. Sci. China Life Sci., 2024, 67(7): 1338-1367. |
55 | LAUX T, MAYER K F, BERGER J, et al.. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis [J]. Development, 1996, 122(1): 87-96. |
56 | GALLOIS J L, NORA F R, MIZUKAMI Y, et al.. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem[J]. Genes Dev., 2004, 18(4): 375-380. |
57 | DAI X, LIU Z, QIAO M, et al.. ARR12 promotes de novo shoot regeneration in Arabidopsis thaliana via activation of WUSCHEL expression[J]. J. Integr. Plant Biol., 2017, 59(10): 747-758. |
58 | MENG W J, CHENG Z J, SANG Y L, et al.. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL[J]. Plant Cell, 2017, 29(6): 1357-1372. |
59 | CHENG Z J, WANG L, SUN W, et al.. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by Auxin response factor3[J]. Plant Physiol., 2012, 161(1): 240-251. |
60 | KYOZUKA J. Control of shoot and root meristem function by cytokinin[J]. Curr. Opin. Plant Biol., 2007, 10(5): 442-446. |
61 | YADAV R K, GIRKE T, PASALA S, et al.. Gene expression map of the Arabidopsis shoot apical meristem stem cell niche[J]. Proc. Natl. Acad. Sci. USA, 2009, 106(12): 4941-4946. |
62 | BARTRINA I, OTTO E, STRNAD M, et al.. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana [J]. Plant Cell, 2011, 23(1): 69-80. |
63 | CHICKARMANE V S, GORDON S P, TARR P T, et al.. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem[J]. Proc. Natl. Acad. Sci. USA, 2012, 109(10): 4002-4007. |
[1] | 章寅, 李志明, 晁盛茜, 陈一帆, 吕贝贝. 矿质元素和植物激素对超群羊肚菌生长影响的研究[J]. 生物技术进展, 2024, 14(6): 947-951. |
[2] | 杨得正, 付惠仙, 肖素勤, 雷凌云, 李天时, 程在全, 刘丽. 水稻株型的遗传基础与分子调控机理研究进展[J]. 生物技术进展, 2024, 14(3): 349-359. |
[3] | 马义博, 常越辰, 马克涛, 李丽, 王勤章, 李应龙. 雌激素对SD大鼠肾脏缺血再灌注肾小管上皮细胞Cx43蛋白表达的影响[J]. 生物技术进展, 2022, 12(3): 452-459. |
[4] | 谢露露, 姚宝珍. 地塞米松致子代大鼠海马轴突发育损伤[J]. 生物技术进展, 2022, 12(3): 467-472. |
[5] | 左卫星,张志飞,刘志民,王超群4. 参与下丘脑-垂体-甲状腺轴负反馈调控的分子元件研究进展[J]. 生物技术进展, 2017, 7(6): 601-607. |
[6] | 王明鹏,陈蕾,刘正一,秦松,闫培生,. 海藻生物肥研究进展与展望[J]. 生物技术进展, 2015, 5(3): 158-163. |
[7] | 常亮,李晨辉,马志珺,赵静,高健. 糖蛋白激素研究进展[J]. 生物技术进展, 2015, 5(1): 22-28. |
[8] | 杨淑巧,王志安,张安红,许琦,肖娟丽,罗晓丽. 棉花WRKY基因GhWRKY25的克隆和表达分析[J]. 生物技术进展, 2014, 4(4): 274-279. |
[9] | 张永红,唐芬芬,邵榆岚,钟健,白兴荣. 重组猪生长激素表达研究进展[J]. 生物技术进展, 2014, 4(3): 165-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部