生物技术进展 ›› 2025, Vol. 15 ›› Issue (2): 254-262.DOI: 10.19586/j.2095-2341.2024.0151
• 进展评述 • 上一篇
收稿日期:
2024-09-18
接受日期:
2024-12-27
出版日期:
2025-03-25
发布日期:
2025-04-29
通讯作者:
李响
作者简介:
刘昊 E-mail: helenliuhao9@163.com;
基金资助:
Received:
2024-09-18
Accepted:
2024-12-27
Online:
2025-03-25
Published:
2025-04-29
Contact:
Xiang LI
摘要:
冠状动脉性疾病(coronary artery disease,CAD)是全球范围内导致人类死亡的首要原因之一。综述了动脉粥样硬化的病理生理特征与发病机制,重点阐述了遗传因素、炎症免疫反应以及脂质代谢异常等在动脉粥样硬化形成过程中的作用。此外,还系统分析了促进动脉粥样硬化进展的危险因素,并探讨了从预防到治疗的最新研究进展。深入揭示了动脉粥样硬化的关键致病环节,为开发新型预防和治疗策略提供了理论基础。
中图分类号:
刘昊, 李响. 冠状动脉疾病发病机制及治疗策略研究进展[J]. 生物技术进展, 2025, 15(2): 254-262.
Hao LIU, Xiang LI. Research Progress on Pathogenic Mechanisms and Treatment Strategy of Coronary Artery Disease[J]. Current Biotechnology, 2025, 15(2): 254-262.
1 | World Health Organization. The Top 10 causes of death[EB/OL]. (2024-08-07)[2024-08-07]. . |
2 | KHAIR M, KHAIR M, VANGAVETI V N, et al.. The role of the NLRP3 inflammasome in atherosclerotic disease: systematic review and meta-analysis[J]. J. Cardiol., 2024, 84(1): 14-21. |
3 | Centers for Disease Control and Prevention (CDC). Heart Disease Facts[EB/OL]. (2024-02-01) [2025-01-10]. . |
4 | WANG R, WANG Y, LU J, et al.. Forecasting cardiovascular disease risk and burden in China from 2020 to 2030: a simulation study based on a nationwide cohort[J]. Heart, 2025, 111(5): 205-211. |
5 | RICKARD J, KRISHNASWAMY A, et al.. National trends in cardiovascular-related hospitalizations and costs: 2016-2021[J]. Am. J. Cardiol., 2024, doi:10.1016/j.amjcard.2024.03.01[2025-01-10]. . |
6 | American Heart Association. Forecasting the burden and economic costs of cardiovascular disease and stroke in the United States through 2050. Circulation, 2024.[EB/OL]. (2024-02-01) [2025-01-10].. |
7 | KHERA A V, KATHIRESAN S. Genetics of coronary artery disease: discovery, biology and clinical translation[J]. Nat. Rev. Genet., 2017, 18(6): 331-344. |
8 | LIBBY P. The changing landscape of atherosclerosis[J]. Nature, 2021, 592(7855): 524-533. |
9 | MILUTINOVIĆ A, ŠUPUT D, ZORC-PLESKOVIČ R. Pathogenesis of atherosclerosis in the Tunica intima, media, and adventitia of coronary arteries: an updated review[J]. Bosn. J. Basic Med. Sci., 2020, 20(1): 21-30. |
10 | ASKIN L, DUMAN H, OZYıLDıZ A, et al.. Association between omentin-1 and coronary artery disease: pathogenesis and clinical research[J]. Curr. Cardiol. Rev., 2020, 16(3): 198-201. |
11 | 吴立玲.心血管病理生理学[M].北京:北京医科大学出版社,2000. |
12 | MOORE K J, TABAS I. Macrophages in the pathogenesis of atherosclerosis[J]. Cell, 2011, 145(3): 341-355. |
13 | NAKASHIMA Y, WIGHT T N, SUEISHI K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans[J]. Cardiovasc. Res., 2008, 79(1): 14-23. |
14 | WANG H, LIU Z, SHAO J, et al.. Pathogenesis of premature coronary artery disease: focus on risk factors and genetic variants[J]. Genes Dis., 2022, 9(2): 370-380. |
15 | KRYCZKA K E, KRUK M, DEMKOW M, et al.. Fibrinogen and a triad of thrombosis, inflammation, and the renin-angiotensin system in premature coronary artery disease in women: a new insight into sex-related differences in the pathogenesis of the disease[J/OL]. Biomolecules, 2021, 11(7): 1036[2024-12-01]. . |
16 | KARIMABAD M N, KOUNIS N G, HASSANSHAHI G, et al.. The involvement of CXC motif chemokine ligand 10 (CXCL10) and its related chemokines in the pathogenesis of coronary artery disease and in the COVID-19 vaccination: a narrative review[J/OL]. Vaccines Basel., 2021, 9(11): 1224[2024-12-01]. . |
17 | KOLOGRIVOVA I V, NARYZHNAYA N V, KOSHELSKAYA O A, et al.. Association of epicardial adipose tissue adipocytes hypertrophy with biomarkers of low-grade inflammation and extracellular matrix remodeling in patients with coronary artery disease[J/OL]. Biomedicines, 2023, 11(2): 241[2024-12-01]. . |
18 | PACKER M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium[J]. J. Am. Coll. Cardiol., 2018, 71(20): 2360-2372. |
19 | MANCIO J, AZEVEDO D, SARAIVA F, et al.. Epicardial adipose tissue volume assessed by computed tomography and coronary artery disease: a systematic review and meta-analysis[J]. Eur. Heart J. Cardiovasc. Imaging, 2018, 19(5): 490-497. |
20 | GIMBRONE M A, GARCÍA-CARDEÑA G. Endothelial cell dysfunction and the pathobiology of atherosclerosis[J]. Circ. Res., 2016, 118(4): 620-636. |
21 | BADIMON L, SUADES R, FUENTES E, et al.. Role of platelet-derived microvesicles as crosstalk mediators in atherothrombosis and future pharmacology targets: a link between inflammation, atherosclerosis, and thrombosis[J/OL]. Front. Pharmacol, 2016, 7: 293[2024-12-01]. . |
22 | JUNG R G, SIMARD T, LABINAZ A, et al.. Role of plasminogen activator inhibitor-1 in coronary pathophysiology[J]. Thromb. Res., 2018, 164: 54-62. |
23 | ZHANG F, LIU J, LI S F, et al.. Angiotensin-(1-7): new perspectives in atherosclerosis treatment[J]. J. Geriatr. Cardiol., 2015, 12(6): 676-682. |
24 | BROWN N J. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis[J]. Nat. Rev. Nephrol., 2013, 9(8): 459-469. |
25 | FÖRSTERMANN U, XIA N, LI H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis[J]. Circ. Res., 2017, 120(4): 713-735. |
26 | NOMURA C H, ASSUNCAO-JR A N, GUIMARÃES P O, et al.. Association between perivascular inflammation and downstream myocardial perfusion in patients with suspected coronary artery disease[J]. Eur. Heart J. Cardiovasc. Imag., 2020, 21(6): 599-605. |
27 | KESSLER T, SCHUNKERT H. Coronary artery disease genetics enlightened by genome-wide association studies[J]. JACC Basic Transl. Sci., 2021, 6(7): 610-623. |
28 | PATEL A P, WANG M, RUAN Y, et al.. A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease[J]. Nat. Med., 2023, 29(7): 1793-1803. |
29 | HU L, SU G, WANG X. The roles of ANRIL polymorphisms in coronary artery disease: a meta-analysis[J/OL]. Biosci. Rep., 2019, 39(12): BSR20181559[2024-12-01]. . |
30 | LI X, LIN Y, ZHANG R. Associations between endothelial nitric oxide synthase gene polymorphisms and the risk of coronary artery disease: a systematic review and meta-analysis of 132 case-control studies[J]. Eur. J. Prev. Cardiol., 2019, 26(2): 160-170. |
31 | HOSSEINI D K, ATAIKIA S, HOSSEINI H K, et al.. Association of polymorphisms in ADAMTS-7 gene with the susceptibility to coronary artery disease-a systematic review and meta-analysis[J]. Aging Albany NY, 2020, 12(20): 20915-20923. |
32 | HUANG R, ZHAO S R, LI Y, et al.. Association of tumor necrosis factor-α gene polymorphisms and coronary artery disease susceptibility: a systematic review and meta-analysis[J/OL]. BMC Med. Genet., 2020, 21(1): 29[2024-12-01]. . |
33 | LI Y, YUAN H P, SON L, et al..beta(2)-adrenergic receptor gene polymorphisms are associated with cardiovascular events but not all-cause mortality in coronary artery disease patients: a meta-analysis of prospective studies[J]. Genet. Test Mol. Biomarkers,2019,23:124-137. |
34 | JIANG J, CHEN X, LI C, et al.. Polymorphisms of TRIB1 genes for coronary artery disease and stroke risk: a systematic review and meta-analysis[J/OL]. Gene, 2023, 880: 147613[2024-12-01]. . |
35 | RAI H, FITZGERALD S, COUGHLAN J J, et al.. Glu298Asp variant of the endothelial nitric oxide synthase gene and acute coronary syndrome or premature coronary artery disease: a systematic review and meta-analysis[J]. Nitric Oxide, 2023, 138: 85-95. |
36 | LI Y Y, WANG H, ZHANG Y Y. Macrophage migration inhibitory factor gene rs755622 G/C polymorphism and coronary artery disease: a meta-analysis of 8, 488 participants[J/OL]. Cardiovasc. Med., 2022, 9: 959028[2024-12-01]. . |
37 | LI Y Y, WANG H, YANG X X, et al.. PCSK9 gene E670G polymorphism and coronary artery disease: an updated meta-analysis of 5, 484 subjects[J/OL]. Cardiovasc Med., 2020, 7: 582865[2024-12-01]. . |
38 | NAKATOCHI M, ICHIHARA S, YAMAMOTO K, et al.. Epigenome-wide association study suggests that SNPs in the promoter region of RETN influence plasma resistin level via effects on DNA methylation at neighbouring sites[J]. Diabetologia, 2015, 58(12): 2781-2790. |
39 | FERNÁNDEZ-SANLÉS A, SAYOLS-BAIXERAS S, SUBIRANA I, et al.. Association between DNA methylation and coronary heart disease or other atherosclerotic events: a systematic review[J]. Atherosclerosis, 2017, 263: 325-333. |
40 | DU P, GAO K, CAO Y, et al.. RFX1 downregulation contributes to TLR4 overexpression in CD14+ monocytes via epigenetic mechanisms in coronary artery disease[J/OL]. Clin. Epigenet., 2019, 11(1): 44[2024-12-01]. . |
41 | LIU W, LING S, SUN W, et al.. Circulating microRNAs correlated with the level of coronary artery calcification in symptomatic patients[J/OL]. Sci. Rep., 2015, 5: 16099[2024-12-01]. . |
42 | MEDER B, HAAS J, SEDAGHAT-HAMEDANI F, et al.. Epigenome-wide association study identifies cardiac gene patterning and a novel class of biomarkers for heart failure[J]. Circulation, 2017, 136(16): 1528-1544. |
43 | SCHIANO C, VIETRI M T, GRIMALDI V, et al.. Epigenetic-related therapeutic challenges in cardiovascular disease[J]. Trends Pharmacol. Sci., 2015, 36(4): 226-235. |
44 | KINOSHITA D, SUZUKI K, YUKI H, et al.. Coronary artery disease reporting and data system (CAD-RADS), vascular inflammation and plaque vulnerability[J]. J. Cardiovasc. Comput. Tomogr., 2023, 17(6): 445-452. |
45 | SUN M, ZHU S, WANG Y, et al.. Effect of inflammation on association between cancer and coronary artery disease[J/OL]. BMC Cardiovasc. Disord., 2024, 24(1): 72[2024-12-01]. . |
46 | ZHU Q, WU Y, MAI J, et al.. Comprehensive metabolic profiling of inflammation indicated key roles of glycerophospholipid and arginine metabolism in coronary artery disease[J/OL]. Front. Immunol., 2022, 13: 829425[2024-12-01]. . |
47 | FOLDYNA B, MAYRHOFER T, ZANNI M V, et al.. Pericoronary adipose tissue density, inflammation, and subclinical coronary artery disease among people with HIV in the REPRIEVE cohort[J]. Clin. Infect. Dis., 2023, 77(12): 1676-1686. |
48 | GHALANDARI M, JAMIALAHMADI K, NIK M M, et al.. Association of Interleukin-10 -592 C > A gene polymorphism with coronary artery disease: a case-control study and meta-analysis[J/OL]. Cytokine,2021,139:155403[2024-12-01]. . |
49 | RATH D, RAPP V, SCHWARTZ J, et al.. Homophilic interaction between transmembrane-JAM-A and soluble JAM-a regulates thrombo-inflammation: implications for coronary artery disease[J]. JACC Basic Transl. Sci., 2022, 7(5): 445-461. |
50 | BAGYURA Z, KISS L, LUX Á, et al.. Neutrophil-to-lymphocyte ratio is an independent risk factor for coronary artery disease in central obesity[J/OL]. Int. J. Mol. Sci., 2023, 24(8): 7397[2024-12-01]. . |
51 | YUAN S, CARTER P, MASON A M, et al.. Genetic liability to rheumatoid arthritis in relation to coronary artery disease and stroke risk[J]. Arthritis Rheumatol., 2022, 74(10): 1638-1647. |
52 | ZHUANG P, LIU X, LI Y, et al.. Circulating fatty acids, genetic risk, and incident coronary artery disease: A prospective, longitudinal cohort study[J/OL].Sci. Adv.,2023,9:eadf9037[2024-12-01]. . |
53 | CHEN Y, LIAO Y, SUN S, et al.. Stratified meta-analysis by ethnicity revealed that ADRB3 Trp64Arg polymorphism was associated with coronary artery disease in Asians, but not in Caucasians[J/OL]. Medicine (Baltimore), 2020, 99(4): e18914[2024-12-01]. . |
54 | LIU H, CHEN X, HU X, et al.. Alterations in the gut microbiome and metabolism with coronary artery disease severity[J/OL]. Microbiome, 2019, 7(1): 68[2024-12-01]. . |
55 | ZUIN M, TRENTINI A, MARSILLACH J, et al.. Paraoxonase-1 (PON-1) arylesterase activity levels in patients with coronary artery disease: a meta-analysis[J/OL]. Dis. Markers, 2022, 2022: 4264314[2024-12-01]. . |
56 | ZHENG J, LIU M, CHEN L, et al.. Association between serum adropin level and coronary artery disease: a systematic review and meta-analysis[J]. Cardiovasc. Diagn. Ther., 2019, 9(1): 1-7. |
57 | RESHADMANESH T, BEHNOUSH A H, FARAJOLLAHI M, et al.. Circulating levels of calprotectin as a biomarker in patients with coronary artery disease: a systematic review and meta-analysis[J/OL]. Clin. Cardiol., 2024, 47(7): e24315[2024-12-01]. . |
58 | ZHANG C Y, XU R Q, WANG X Q, et al.. Comprehensive transcriptomics and metabolomics analyses reveal that hyperhomocysteinemia is a high risk factor for coronary artery disease in a Chinese obese population aged 40-65: a prospective cross-sectional study[J/OL]. Cardiovasc. Diabetol., 2023, 22(1): 219[2024-12-01]. . |
59 | SILVA S, FATUMO S, NITSCH D. Mendelian randomization studies on coronary artery disease: a systematic review and meta-analysis[J/OL]. Syst. Rev., 2024, 13(1): 29[2024-12-01]. . |
60 | GISONDI P, FOSTINI A C, FOSSÀ I, et al.. Psoriasis and the metabolic syndrome[J]. Clin. Dermatol., 2018, 36(1): 21-28. |
61 | PATRICK M T, LI Q, WASIKOWSKI R, et al.. Shared genetic risk factors and causal association between psoriasis and coronary artery disease[J/OL]. Nat. Commun., 2022, 13(1): 6565[2024-12-01]. . |
62 | URBUT S M, YEUNG M W, KHURSHID S, et al.. MSGene: a multistate model using genetic risk and the electronic health record applied to lifetime risk of coronary artery disease[J/OL]. Nat. Commun., 2024, 15(1): 4884[2024-12-01]. . |
63 | RAMÍREZ J, VAN DUIJVENBODEN S, YOUNG W J, et al.. Prediction of coronary artery disease and major adverse cardiovascular events using clinical and genetic risk scores for cardiovascular risk factors[J/OL]. Circ. Genom. Precis. Med., 2022, 15(5): e003441[2024-12-01]. . |
64 | KAZI S, CHONG J J H, CHOW C K. Inflammation: the next target for secondary prevention in coronary artery disease[J]. Med. J. Aust., 2024, 220(3): 115-120. |
65 | LEE Y J, HONG S J, KANG W C, et al.. Rosuvastatin versus atorvastatin treatment in adults with coronary artery disease: secondary analysis of the randomised LODESTAR trial[J/OL]. BMJ, 2023, 383: e075837[2024-12-01]. . |
66 | LEE S J, LEE J B, YANG T H, et al.. Treat-to-target or high-intensity statin treatment in older adults with coronary artery disease: a post hoc analysis of the LODESTAR trial[J/OL]. Age Ageing, 2024, 53(7): afae132[2024-12-01]. . |
67 | PAN J, PING P D, WANG W, et al.. Cost-effectiveness analysis of Shexiang Baoxin Pill (MUSKARDIA) as the add-on treatment to standard therapy for stable coronary artery disease in China[J/OL]. PLoS One, 2024, 19(3): e0299236[2024-12-01]. . |
68 | BAI X, SHEN C, ZHANG W, et al.. Efficacy and risks of drug-coated balloon treatment for coronary artery disease: a meta-analysis[J/OL]. Heliyon, 2023, 9(11): e22224[2024-12-01]. . |
69 | SCIAHBASI A, MAZZA T M, PIDONE C, et al.. A new frontier for drug-coated balloons: treatment of "de novo" stenosis in large vessel coronary artery disease[J/OL]. J. Clin. Med., 2024, 13(5): 1320[2024-12-01]. . |
70 | DOENST T, THIELE H, HAASENRITTER J, et al.. The treatment of coronary artery disease[J]. Dtsch. Arztebl. Int., 2022, 119(42): 716-723. |
71 | 李岩异, 吕娜, 陈金利, 等. 大豆蛋白源性肽调节糖脂代谢机制研究进展[J]. 生物技术进展, 2022, 12(6): 853-860. |
LI Y, LYU N, CHEN J L, et al.. Advances in mechanisms of soy protein-derived peptides in regulating glucose and lipid metabolism[J]. Curr. Biotechnol., 2022, 12(6): 853-860. | |
72 | QIN P, WANG T, LUO Y. A review on plant-based proteins from soybean: health benefits and soy product development[J/OL]. J. Agric. Food Res., 2022, 7: 100265[2024-12-01]. . |
73 | 段兴鹏, 刘景丽, 王澈, 等. 巨噬细胞清道夫受体与Toll样受体对Ox-LDL摄取和炎症的影响[J]. 生物技术进展, 2024, 14(4): 668-675. |
DUAN X P, LIU J L, WANG C, et al.. Effects of macrophage scavenger receptors and Toll-like receptors on Ox-LDL uptake and inflammation[J]. Curr. Biotechnol., 2024, 14(4): 668-675. | |
74 | KUMAR M, ALI W, YADAV K, et al.. High-density lipoprotein-associated paraoxonase-1 (PON-1) and scavenger receptor class B type 1 (SRB-1) in coronary artery disease: correlation with disease severity[J/OL]. J. Clin. Med., 2024, 13(18): 5480[2024-12-01]. . |
75 | 方学升, 包明威. 骨膜蛋白在心血管疾病中的研究进展[J]. 生物技术进展, 2023, 13(5): 725-729. |
FANG X S, BAO M W. Research progress of periostin in cardiovascular diseases[J]. Curr. Biotechnol., 2023, 13(5): 725-729. | |
76 | PADIAL-MOLINA M, GONZALEZ-PEREZ G, MARTIN-MORALES N, et al.. Periostin in the relation between periodontal disease and atherosclerotic coronary artery disease: a pilot randomized clinical study[J]. J. Periodontal. Res., 2024, 59(3): 446-457. |
77 | 欧阳满. FGF21类似物治疗动脉粥样硬化机制研究进展[J]. 生物技术进展, 2020, 10(5): 463-469. |
OUYANG M. Research progress on the mechanism of FGF21 analogues in the treatment of atherosclerosis[J]. Curr. Biotechnol., 2020, 10(5): 463-469. | |
78 | SINHA S R, PRAKASH P, KESHARI J R, et al.. The correlation between serum fibroblast growth factor 21 and the severity and occurrence of coronary artery disease[J/OL]. Cureus, 2024, 16(1): e51924[2024-12-01]. . |
[1] | 段兴鹏, 刘景丽, 王澈, 尚德静. 巨噬细胞清道夫受体与Toll样受体对Ox-LDL摄取和炎症的影响[J]. 生物技术进展, 2024, 14(4): 668-675. |
[2] | 方学升, 包明威. 骨膜蛋白在心血管疾病中的研究进展[J]. 生物技术进展, 2023, 13(5): 725-729. |
[3] | 熊茂兰, 蔚思言, 罗军涛, 韩兵社, 张俊芳. 敲除hdac11基因对斑马鱼脂代谢的影响[J]. 生物技术进展, 2023, 13(4): 588-595. |
[4] | 李岩异, 吕娜, 陈金利, 李晓, 张卫婷, 张红霞. 大豆蛋白源性肽调节糖脂代谢机制研究进展[J]. 生物技术进展, 2022, 12(6): 853-860. |
[5] | 欧阳满. FGF21类似物治疗动脉粥样硬化机制研究进展[J]. 生物技术进展, 2020, 10(5): 463-469. |
[6] | 陆腾飞,裴文华,邬杨楠,马月辉,关伟军. 血管干/祖细胞的研究进展[J]. 生物技术进展, 2017, 7(3): 182-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部