生物技术进展 ›› 2024, Vol. 14 ›› Issue (6): 1004-1015.DOI: 10.19586/j.2095-2341.2024.0086
汪苏洁1(), 顾梦丽1, 陶界锰1,2, 童治军3, 郭俊佳1, 金静静1,2, 徐梦晓1, 孟利军1, 张剑锋1,2, 曹培健1,2, 卢鹏1,2(
)
收稿日期:
2024-04-17
接受日期:
2024-06-21
出版日期:
2024-11-25
发布日期:
2024-12-27
通讯作者:
卢鹏
作者简介:
汪苏洁 E-mail: wangsujie951230@163.com;
基金资助:
Sujie WANG1(), Mengli GU1, Jiemeng TAO1,2, Zhijun TONG3, Junjia GUO1, Jingjing JIN1,2, Mengxiao XU1, Lijun MENG1, Jianfeng ZHANG1,2, Peijian CAO1,2, Peng LU1,2(
)
Received:
2024-04-17
Accepted:
2024-06-21
Online:
2024-11-25
Published:
2024-12-27
Contact:
Peng LU
摘要:
烟草疫霉(Phytophthora nicotianae)是一种可引发烟草黑胫病的土传卵菌,对烟草生产造成极大危害。为了应对这一问题,筛选出一株对烟草疫霉菌具有较强生防功能的菌株XC-29,通过解析基因组信息,挖掘其拮抗代谢产物及拮抗基因。采用平板对峙法和盆栽试验鉴定生防菌XC-29的抑菌活性和防治效果;通过形态观察和16S rRNA扩增子测序技术准确鉴定了XC-29菌株;利用全基因组测序、转录组测序探究菌株拮抗机制。结果表明,根际土分离的拮抗菌株XC-29鉴定为沙福芽孢杆菌(Bacillus safensis),其全基因组测序预测出136种碳水化合物活性酶和11个编码次生代谢产物合成相关的基因簇,其中6个基因簇已被确认为抗菌物质合成簇,分别编码地衣素、双效菌素、schizokinen、丰原素、杆菌溶素和嗜铁素;转录组测序结果进一步确定菌株基因具有编码相应抑菌物质的能力。综上,沙福芽孢杆菌XC-29对烟草疫霉菌具有较强的拮抗作用,全基因组和转录组分析初步揭示了沙福芽孢杆菌XC-29的抑病机理,为进一步探究拮抗菌的抑菌机制和生物防控提供理论依据。
中图分类号:
汪苏洁, 顾梦丽, 陶界锰, 童治军, 郭俊佳, 金静静, 徐梦晓, 孟利军, 张剑锋, 曹培健, 卢鹏. 烟草疫霉拮抗菌XC-29的分离鉴定及其全基因组序列分析[J]. 生物技术进展, 2024, 14(6): 1004-1015.
Sujie WANG, Mengli GU, Jiemeng TAO, Zhijun TONG, Junjia GUO, Jingjing JIN, Mengxiao XU, Lijun MENG, Jianfeng ZHANG, Peijian CAO, Peng LU. Isolation, Identification and Whole-genome Sequence Analysis of Phytophthora nicotianae Antagonistic Bacteria XC-29[J]. Current Biotechnology, 2024, 14(6): 1004-1015.
图2 生防菌XC-29对对烟草黑胫病的盆栽防效注:T1—不处理;T2—生防菌处理;T3—生防菌+烟草疫霉菌谷处理;T4—烟草疫霉菌谷处理。
Fig. 2 The control effects of biocontrol bacteria XC-29 against tobacco black shank disease in pot-control
图4 生防菌XC-29及其相似细菌的16S rRNA基因序列构建系统进化关系及ANI值分析A:基于16S rRNA基因序列的生防菌XC-29及其相似细菌系统进化树;括号内表示为各菌株的GenBank登录号;“T”表示模式菌株;分支上的数值代表支持率(此处只显示支持率>90%的分支);标尺表示2%的序列进化差异;B:生防菌XC-29与其相似细菌的ANI值(%)比较;图中展示的数字表示核苷酸一致性(ANI)值,单位为百分比(%);图中颜色越红表示ANI值越高。图中涉及的菌种包括:Bacillus safensis—沙福芽孢杆菌;Bacillus pumilus—短小芽孢杆菌;Bacillus australimaris—南海芽胞杆菌;Bacillus zhangzhouensis—漳州芽孢杆菌;Bacillus xiamenensis—厦门芽孢杆菌;Bacillus aerius—空气芽孢杆菌;Bacillus altitudinis—高地芽孢杆菌;Bacillus stratosphericus—同温层芽孢杆菌;Bacillus atrophaeus—萎缩芽孢杆菌;Bacillus subtilis subsp. subtilis—枯草芽孢杆菌的一个亚种。
Fig. 4 Phylogenetic relationship and ANI value analysis based on the 16S rRNA gene sequences of biocontrol bacteria XC-29 and its similar bacteria
类型 | 特征 | 数值 |
---|---|---|
基因组 | 染色体个数 | 1 |
基因组序列总长度/bp | 3 719 058 | |
编码蛋白基因 | 基因数 | 3 870 |
基因总长度/bp | 3 310 209 | |
基因平均长度/bp | 855 | |
基因序列中GC含量/% | 42.24 | |
基因间区 | 基因间区总长度/bp | 408 849 |
基因间区GC含量/% | 37.87 | |
非编码 | tRNA拷贝数 | 81 |
5S rRNA拷贝数 | 8 | |
16S rRNA拷贝数 | 8 | |
23S rRNA拷贝数 | 8 | |
sRNA拷贝数 | 7 |
表1 生防菌XC-29全基因组序列分析
Table 1 Whole genome sequence analysis of biocontrol strain XC-29
类型 | 特征 | 数值 |
---|---|---|
基因组 | 染色体个数 | 1 |
基因组序列总长度/bp | 3 719 058 | |
编码蛋白基因 | 基因数 | 3 870 |
基因总长度/bp | 3 310 209 | |
基因平均长度/bp | 855 | |
基因序列中GC含量/% | 42.24 | |
基因间区 | 基因间区总长度/bp | 408 849 |
基因间区GC含量/% | 37.87 | |
非编码 | tRNA拷贝数 | 81 |
5S rRNA拷贝数 | 8 | |
16S rRNA拷贝数 | 8 | |
23S rRNA拷贝数 | 8 | |
sRNA拷贝数 | 7 |
类型 | 基因数 | 占总基因百分比 |
---|---|---|
COG | 2 896 | 74.83% |
GO | 2 708 | 69.97% |
KEGG | 3 652 | 94.37% |
CAZy | 136 | 3.51% |
表2 生防菌XC-29基因功能注释数据库分布情况
Table 2 Database distribution of gene functional annotation from the biocontrol bacterium XC-29
类型 | 基因数 | 占总基因百分比 |
---|---|---|
COG | 2 896 | 74.83% |
GO | 2 708 | 69.97% |
KEGG | 3 652 | 94.37% |
CAZy | 136 | 3.51% |
图5 生防菌XC-29基因组COG功能注释图注:A—RNA加工修饰;C—能量生成和转换;D—细胞周期控制、细胞分裂和染色体分裂;E—氨基酸转运代谢;F—核苷酸转运和代谢;G—碳水化合物转运代谢;H—辅酶转运和代谢;I—脂质转运代谢;J—翻译、核糖体结构和生物合成;K—转录;L—复制,重组和修复;M—细胞壁/膜/被膜的生物合成;N—细胞运动;O—翻译后修饰,蛋白质折叠和伴侣蛋白;P—无机离子转运代谢;Q—次级代谢物生物合成、转运和代谢;R—主要功能预测;S—未知功能;T—信号转导机制;U—胞内转运、分泌和小泡运输;V—抵御机制;W—胞外结构;X—动员组—噬菌体原、转座子;Z—细胞骨架。
Fig. 5 COG function annotation of biocontrol bacterium XC-29 genome
通路编号 | 类目 | 基因数(>40) |
---|---|---|
Map01100 | 代谢途径 | 566 |
Map01110 | 次生代谢物的生物合成 | 276 |
Map01130 | 抗生素的生物合成 | 211 |
Map01120 | 不同环境下的微生物代谢 | 170 |
Map02010 | ABC转运蛋白 | 138 |
Map01230 | 氨基酸的生物合成 | 130 |
Map02020 | 双组分调节系统 | 111 |
Map01200 | 碳代谢 | 98 |
Map02024 | 群体效应 | 70 |
Map00230 | 嘌呤代谢 | 59 |
Map03010 | 核糖体 | 52 |
Map00240 | 嘧啶代谢 | 45 |
Map00010 | 糖酵解/糖异生 | 44 |
Map00620 | 丙酮酸代谢 | 44 |
Map00270 | 半胱氨酸与蛋氨酸代谢 | 40 |
表3 生防菌XC-29基因组KEGG主要代谢通路分析
Table 3 Main metabolic pathways of the biocontrol bacterium XC-29 from KEGG
通路编号 | 类目 | 基因数(>40) |
---|---|---|
Map01100 | 代谢途径 | 566 |
Map01110 | 次生代谢物的生物合成 | 276 |
Map01130 | 抗生素的生物合成 | 211 |
Map01120 | 不同环境下的微生物代谢 | 170 |
Map02010 | ABC转运蛋白 | 138 |
Map01230 | 氨基酸的生物合成 | 130 |
Map02020 | 双组分调节系统 | 111 |
Map01200 | 碳代谢 | 98 |
Map02024 | 群体效应 | 70 |
Map00230 | 嘌呤代谢 | 59 |
Map03010 | 核糖体 | 52 |
Map00240 | 嘧啶代谢 | 45 |
Map00010 | 糖酵解/糖异生 | 44 |
Map00620 | 丙酮酸代谢 | 44 |
Map00270 | 半胱氨酸与蛋氨酸代谢 | 40 |
类型 | 家族成员 | 基因数 |
---|---|---|
AA | AA1 | 1 |
CBM | CBM12、CBM13、CBM48、CBM50 | 35 |
CE | CE0、CE12、CE14、CE4、CE7、CE8、CE9 | 18 |
GH | GH0、GH1、GH3、GH4、GH5、GH9、GH10、GH11、GH13、GH16、GH18、GH23、GH28、GH30、GH32、GH33、GH38、GH42、GH43、GH48、GH51、GH53、GH73、GH101、GH105、GH126、GH170、GH171 | 55 |
GT | GT0、GT1、GT4、GT9、GT26、GT28、GT30、GT51、GT58 | 28 |
PL | PL1、PL9 | 2 |
表4 生防菌XC-29基因组CAZy数据库功能注释
Table 4 CAZy database function annotation of biocontrol bacterium XC-29 genome
类型 | 家族成员 | 基因数 |
---|---|---|
AA | AA1 | 1 |
CBM | CBM12、CBM13、CBM48、CBM50 | 35 |
CE | CE0、CE12、CE14、CE4、CE7、CE8、CE9 | 18 |
GH | GH0、GH1、GH3、GH4、GH5、GH9、GH10、GH11、GH13、GH16、GH18、GH23、GH28、GH30、GH32、GH33、GH38、GH42、GH43、GH48、GH51、GH53、GH73、GH101、GH105、GH126、GH170、GH171 | 55 |
GT | GT0、GT1、GT4、GT9、GT26、GT28、GT30、GT51、GT58 | 28 |
PL | PL1、PL9 | 2 |
基因簇 | 次级代谢产物类型 | 基因数量 | 相似基因簇 | 相似度 |
---|---|---|---|---|
簇1 | 非核糖体肽合成酶 | 43 | 地衣素 | BGC0000381(92%) |
簇2 | 非核糖体肽合成酶、Ⅰ型聚酮类化合物 | 48 | 双效菌素 | BGC0001059(18%) |
簇3 | 包含Rev响应元件 | 24 | 铁载体二异羟肟酸酯 | - |
簇4 | 萜类化合物、镍-铁载体 | 27 | - | BGC0002683(60%) |
簇5 | β-内酯 | 24 | 丰原素 | BGC0001095(53%) |
簇6 | 萜类化合物、镍-铁载体 | 21 | - | - |
簇7 | Ⅲ型聚酮类化合物 | 47 | - | - |
簇8 | 核糖体合成和翻译后修饰肽类似物 | 15 | - | - |
簇9 | β-内酯 | 33 | - | - |
簇10 | 其他 | 46 | 杆菌溶素 | BGC0001184(85%) |
簇11 | 非核糖体肽-载体、非核糖体肽合成酶 | 39 | 嗜铁素bacilibactin(E/F) | BGC0002695(80%) |
嗜铁素bacilibactin | BGC0000309(100%) | |||
嗜铁素paenibactin | BGC0000401(100%) | |||
嗜铁素bacilibactin | BGC0001185(100%) |
表5 生防菌XC-29次级代谢产物预测结果
Table 5 The secondary metabolite ofbiocontrol bacterium XC-29 predicted by antiSMASH
基因簇 | 次级代谢产物类型 | 基因数量 | 相似基因簇 | 相似度 |
---|---|---|---|---|
簇1 | 非核糖体肽合成酶 | 43 | 地衣素 | BGC0000381(92%) |
簇2 | 非核糖体肽合成酶、Ⅰ型聚酮类化合物 | 48 | 双效菌素 | BGC0001059(18%) |
簇3 | 包含Rev响应元件 | 24 | 铁载体二异羟肟酸酯 | - |
簇4 | 萜类化合物、镍-铁载体 | 27 | - | BGC0002683(60%) |
簇5 | β-内酯 | 24 | 丰原素 | BGC0001095(53%) |
簇6 | 萜类化合物、镍-铁载体 | 21 | - | - |
簇7 | Ⅲ型聚酮类化合物 | 47 | - | - |
簇8 | 核糖体合成和翻译后修饰肽类似物 | 15 | - | - |
簇9 | β-内酯 | 33 | - | - |
簇10 | 其他 | 46 | 杆菌溶素 | BGC0001184(85%) |
簇11 | 非核糖体肽-载体、非核糖体肽合成酶 | 39 | 嗜铁素bacilibactin(E/F) | BGC0002695(80%) |
嗜铁素bacilibactin | BGC0000309(100%) | |||
嗜铁素paenibactin | BGC0000401(100%) | |||
嗜铁素bacilibactin | BGC0001185(100%) |
图8 生防菌XC-29编码细胞壁降解酶和次生代谢簇基因表达量A:细胞壁降解酶的基因表达量;B:次生代谢簇1的基因表达量;C:次生代谢簇5的基因表达量;D:次生代谢簇10的基因表达量;E:次生代谢簇11的基因表达量
Fig. 8 The gene expression levels of cell wall-degrading enzymes and secondary metabolite cluster genes in biocontrol bacteria XC-29
1 | 赵亚南,黄大野,杨丹,等.烟草黑胫病研究进展[J].湖北农业科学,2022,61(S1):25-28+66. |
ZHAO Y N, HUANG D Y, YANG D,et al.. Research progress of tobacco black shank disease[J]. Hubei Agric. Sci., 2022, 61(S1): 25-28+66. | |
2 | NIU B, WANG W, YUAN Z, et al.. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease[J/OL]. Front. Microbiol., 2020, 11: 585404[2024-07-25]. . |
3 | 蒲欣,吴茂华,刘锋,等.芽孢杆菌对玉米真菌病害生物防治效果的研究进展[J].江苏农业科学,2024,52(4):23-30. |
PU X, WU M H, LIU F, et al.. Research progress on biological control effect of Bacillus on corn fungal diseases[J]. Jiangsu Agric. Sci., 2024, 52(4): 23-30. | |
4 | 刘开辉,刘月,陈妮,等.芽孢杆菌A-1的鉴定及其抗病促生作用研究[J].陕西科技大学学报,2023,41(5):64-69+86. |
LIU K H, LIU Y, CHEN N, et al.. Study on identification of Bacillus sp. A-1 and its antipathogenic and plant growth-promoting capability[J]. J. Shaanxi Univ. Sci. Technol., 2023, 41(5): 64-69+86. | |
5 | 马乔女,李心悦,顾欣,等.芽孢杆菌抗真菌肽的研究进展[J].中国植保导刊,2023,43(5):17-24. |
MA Q N, LI X Y, GU X, et al.. Research progress of Bacillus antifungal peptides[J]. China Plant Prot., 2023, 43(5): 17-24. | |
6 | HUSSAIN S, TAI B, ALI M, et al.. Antifungal potential of lipopeptides produced by the Bacillus siamensis Sh420 strain against Fusarium graminearum [J/OL]. Microbiol. Spectr., 2024, 12(4): e0400823[2024-07-25]. . |
7 | 王伟宸,赵进,黄薇颐,等.芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J].生物技术通报,2023,39(3):59-68. |
WANG W C, ZHAO J, HUANG W Y, et al.. Research progress in metabolites produced by Bacillus against three common plant pathogenic fungi[J]. Biotechnol. Bull., 2023, 39(3): 59-68. | |
8 | 王冲,李倩,肖红英,等.贝莱斯芽孢杆菌Vel-HNGD-F2产抗菌物质发酵条件优化及抗菌特性研究[J].河南工业大学学报(自然科学),2024,45(1):73-80. |
WANG C, LI Q, XIAO H Y, et al.. Optimization of fermentation conditions and antifungal properties of Bacillus velezensis VelHNGD-F2[J]. J. Henan Uni. Technol., 2024, 45(1): 73-80. | |
9 | XUE J, SUN L, XU H, et al.. Bacillus atrophaeus NX-12 utilizes exosmotic glycerol from Fusarium oxysporum f. sp. cucumerinum for fengycin production[J]. J. Agric. Food Chem., 2023, 71(28): 10565-10574. |
10 | NGALIMAT M S, YAHAYA R S R, BAHARUDIN M M A, et al.. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens [J/OL]. Microorganisms, 2021, 9(3): 614[2024-07-25]. . |
11 | 王怡凡,刘巍,朱其立,等.马铃薯早疫病拮抗细菌WK-1的筛选鉴定及其生物学特性分析[J].西南农业学报,2022,35(4):855-863. |
WANG Y F, LIU W, ZHU Q L, et al.. Screening and identification of potato early blight antagonistic bacteria WK-1 and analysis of its biological characteristics[J]. Southwest China J. Agric. Sci., 2022, 35(4): 855-863. | |
12 | 贾孟媛,王越洋,唐培培,等.烟草黑胫病生防菌的筛选鉴定及其防效[J].湖南农业大学学报(自然科学),2023,49(3):329-334. |
JIA M Y, WANG Y Y, TANG P P, et al.. Screening and identification of biocontrol bacteria for tobacco black shank disease and evaluation of the control effect[J]. J. Hunan Agric. Univ., 2023, 49(3): 329-334. | |
13 | 李苗苗,王晓强,王东坤,等.生防菌复配对烟草黑胫病的防治效果研究[J].中国烟草科学,2020,41(2):32-38. |
LI M M, WANG X Q, WANG D K, et al.. Effect of biocontrol agents mixture on control of tobacco black shank[J]. Chin. Tob. Sci., 2020, 41(2): 32-38. | |
14 | KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol. Biol. Evol., 2016, 33(7): 1870-1874. |
15 | CANTAREL B L, COUTINHO P M, RANCUREL C, et al.. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics[J]. Nucleic Acids Res., 2009, 37(S1): 233-238. |
16 | ASHBURNER M, BALL C A, BLAKE J A, et al.. Gene ontology: tool for the unification of biology. The gene ontology Consortium[J]. Cell Death Discov., 2000, 25(1): 25-29. |
17 | KANEHISA M, GOTO S, HATTORI M, et al.. From genomics to chemical genomics: new developments in KEGG[J]. Nucleic Acids Res., 2006, 34(S1): 354-357. |
18 | TATUSOV R L, FEDOROVA N D, JACKSON J D, et al.. The COG database: an updated version includes eukaryotes[J/OL]. BMC Bioinform., 2003, 4: 41[2024-07-25]. . |
19 | MEDEMA M H, BLIN K, CIMERMANCIC P, et al.. AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences[J]. Nucleic Acids Res., 2011, 39(S2): 339-346. |
20 | RICHTER M, ROSSELLÓ-MÓRA R, OLIVER GLÖCKNER F, et al.. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison[J]. Bioinformatics, 2016, 32(6): 929-931. |
21 | 濮永瑜,包玲凤,何翔,等.烟草青枯病和黑胫病拮抗细菌的筛选、鉴定及防效研究[J].中国农学通报,2022,38(7):116-123. |
PU Y Y, BAO L F, HE X, et al.. Screening, identification and control efficacy of antagonistic bacteria against Ralstonia solanacearum and Phytophthora parasitica [J]. Chin. Agric. Sci. Bull., 2022, 38(7): 116-123. | |
22 | 何明川,施春兰,魏聪聪,等.烟草黑胫病拮抗细菌的分离、鉴定及发酵条件优化[J].南方农业学报,2022,53(6):1604-1615. |
HE M C, SHI C L, WEI C C, et al.. Isolation, identification and optimization of fermentation conditions of antagonistic bacteria against tobacco black shank[J]. J. South. Agric., 2022, 53(6): 1604-1615. | |
23 | 谢强,夏建华,徐传涛,等.巨大芽胞杆菌(Bacillus megaterium,Bm)的抑菌活性及定殖规律分析[J].烟草科技,2022,55(10):19-25. |
XIE Q, XIA J H, XU C T, et al.. Antibacterial activity of Bacillus megaterium strain Bm and its colonization laws[J]. Tob. Sci. Technol., 2022, 55(10): 19-25. | |
24 | 李小杰,李成军,刘红彦,等.烟草疫霉菌拮抗细菌的筛选鉴定及发酵条件优化[J].中国烟草科学,2019,40(1): 68-74. |
LI X J, LI C J, LIU H Yet al.. Screening and fermentation condition optimization for antagonistic bacteria to Phytophthora nicotianae [J]. Chin. Tob. Sci., 2019, 40(1): 68-74. | |
25 | 李颖颖,康业斌,李成军,等.3种拮抗烟草疫霉及产IAA内生细菌的分离鉴定[J].江苏农业科学,2023,51(18):107-114. |
LI Y Y, KANG Y B, LI C J, et al.. Isolation and identification of three endophytic bacteria antagonizing Phytophthora nicotianae and producing IAA[J]. Jiangsu Agric. Sci., 2023, 51(18): 107-114. | |
26 | VOLYNCHIKOVA E, KIM K D. Biological control of oomycete soilborne diseases caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in solanaceous crops[J]. Mycobiology, 2022, 50(5): 269-293. |
27 | YANG J, YUE H R, PAN L Y, et al.. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: current status and future prospects[J/OL]. Bioresour. Technol., 2023, 385: 129449[2024-07-25]. . |
28 | 刘丽阳,胡彦波,王西,等.酶在植物多糖研究中的应用进展[J].食品研究与开发,2024,45(8):217-224. |
LIU L Y, HU Y B, WANG X, et al.. Research progress on the application of enzymes in plant polysaccharides[J]. Food Res. Dev., 2024, 45(8): 217-224. | |
29 | CHÁVEZ-RAMÍREZ B, RODRÍGUEZ-VELÁZQUEZ N D, MONDRAGÓN-TALONIA C M, et al.. Paenibacillus polymyxa NMA1017 as a potential biocontrol agent of Phytophthora tropicalis, causal agent of cacao black pod rot in Chiapas, Mexico [J]. Antonie Van Leeuwenhoek, 2021, 114(1): 55-68. |
30 | WANG Y, LIANG J, ZHANG C, et al.. Bacillus megaterium WL-3 lipopeptides collaborate against Phytophthora infestans to control potato late blight and promote potato plant growth[J/OL]. Front. Microbiol., 2020, 11: 1602[2024-07-25]. . |
31 | HAN X, SHEN D, XIONG Q, et al.. The plant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production[J/OL]. Appl. Environ. Microbiol., 2021, 87(23): e0160121[2024-07-25]. . |
32 | GUO D, YUAN C, LUO Y, et al.. Biocontrol of tobacco black shank disease (Phytophthora nicotianae) by Bacillus velezensis Ba168[J/OL]. Pestic. Biochem. Physiol., 2020, 165: 104523[2024-07-25]. . |
[1] | 陈巧莉, 黄杰, 陈森瑜, 潘少婷, 唐灵芝, 洪璇. 海洋链霉菌次级代谢产物研究进展[J]. 生物技术进展, 2023, 13(6): 844-852. |
[2] | 高应瑞, 康福忠, 孟铁健, 刘珂飞, 王调调, 陈金艳, 孙彤. 基于全基因组测序的丁酸梭菌安全性评价[J]. 生物技术进展, 2023, 13(5): 755-759. |
[3] | 宋开南, 谢李楠, 徐玉泉. 真菌除草活性次级代谢产物研究进展[J]. 生物技术进展, 2023, 13(2): 181-194. |
[4] | 李玲玲. 青蒿内生真菌研究进展[J]. 生物技术进展, 2016, 6(3): 185-187. |
[5] | 伍水龙,江黎明. 红树林放线菌研究进展[J]. 生物技术进展, 2012, 2(5): 335-340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部