生物技术进展 ›› 2023, Vol. 13 ›› Issue (2): 201-209.DOI: 10.19586/j.2095-2341.2022.0108
• 进展评述 • 上一篇
李岩异(), 吕娜, 贾思凝, 张永红, 张红霞, 张卫婷, 陈金利(
)
收稿日期:
2022-06-21
接受日期:
2022-11-17
出版日期:
2023-03-25
发布日期:
2023-04-07
通讯作者:
陈金利
作者简介:
李岩异 E-mail: 1416305041@qq.com;
基金资助:
Yanyi LI(), Na LYU, Sining JIA, Yonghong ZHANG, Hongxia ZHANG, Weiting ZHANG, Jinli CHEN(
)
Received:
2022-06-21
Accepted:
2022-11-17
Online:
2023-03-25
Published:
2023-04-07
Contact:
Jinli CHEN
摘要:
病毒样颗粒(virus like particles, VLPs)近年来被广泛应用于疫苗和治疗性药物递送系统领域。与体内组装VLPs相比,体外组装VLPs具有组装寡聚体成分明确、反应条件可控、避免宿主成分的引入以及能实现药物活性成分的包裹和递送功能等诸多优势。概述了体外VLPs的生产方法、影响体外VLPs形成的因素、VLPs的特征分析方法,综述了体外VLPs在疫苗和治疗性药物递送方面的应用进展,期望对体外VLPs组装技术的发展提供参考思路,促进体外VLPs组装技术在疾病预防和治疗应用方面发挥更大的作用。
中图分类号:
李岩异, 吕娜, 贾思凝, 张永红, 张红霞, 张卫婷, 陈金利. 体外组装的病毒样颗粒在疫苗和药物递送中的应用[J]. 生物技术进展, 2023, 13(2): 201-209.
Yanyi LI, Na LYU, Sining JIA, Yonghong ZHANG, Hongxia ZHANG, Weiting ZHANG, Jinli CHEN. Application of Virus Like Particles Assembled in Vitro in Vaccine and Drug Delivery[J]. Current Biotechnology, 2023, 13(2): 201-209.
商品名 | 生产厂家 | 生产宿主 | 结构蛋白 | 抗原类型 | 组装方式 | 临床状态 | 来源 |
---|---|---|---|---|---|---|---|
Gardasil | MERCK | 酵母 | HPV-L1 | HPV6/11/16/18 | 还原剂解聚/还原剂去除 | 上市 | [ |
Gardasil-9 | MERCK | 酵母 | HPV-L1 | HPV6/11/16/18/31/33/45/52/58 | 还原剂解聚/还原剂去除 | 上市 | [ |
Cervarix | GSK | 昆虫细胞 | HPV-L1 | HPV16/18 | 多步纯化 | 上市 | [ |
厦门万泰 | 大肠杆菌 | HPV L1 | HPV16/18 | 还原剂去除 | 上市 | [ | |
益可宁 | 厦门万泰 | 大肠杆菌 | HEV p239 | HEV E2 | 还原剂去除 | 上市 | [ |
HPV九价 | 厦门万泰 | 大肠杆菌 | HPV L1 | HPV6/11/16/18/31/33/45/52/58 | 还原剂去除 | 临床Ⅲ/CTR20210365 | [ |
ENGERIXB/Fendrix | GSK | 酵母 | HBV/HBsAg | HBsAg | 多步纯化 | 上市 | [ |
Recombivax | MERCK | 酵母 | HBV/HBsAg | HBsAg | 多步纯化 | 上市 | [ |
SARS-CoV-2 | Novavax | 昆虫细胞 | SARS-CoV-2/S nanoparticle | SARS-CoV-2 Spike | 去污剂去除 | 上市 | [ |
NanoFluTM | Novavax | 昆虫细胞 | HA nanoparticle | Influenza virus HA | 去污剂去除 | PhaseⅢ/NCT04120194 | https://clinicaltrals.gov |
表1 体外VLPs技术生产的疫苗进展
Table 1 Progress in vaccine production by in vitro VLPs technology
商品名 | 生产厂家 | 生产宿主 | 结构蛋白 | 抗原类型 | 组装方式 | 临床状态 | 来源 |
---|---|---|---|---|---|---|---|
Gardasil | MERCK | 酵母 | HPV-L1 | HPV6/11/16/18 | 还原剂解聚/还原剂去除 | 上市 | [ |
Gardasil-9 | MERCK | 酵母 | HPV-L1 | HPV6/11/16/18/31/33/45/52/58 | 还原剂解聚/还原剂去除 | 上市 | [ |
Cervarix | GSK | 昆虫细胞 | HPV-L1 | HPV16/18 | 多步纯化 | 上市 | [ |
厦门万泰 | 大肠杆菌 | HPV L1 | HPV16/18 | 还原剂去除 | 上市 | [ | |
益可宁 | 厦门万泰 | 大肠杆菌 | HEV p239 | HEV E2 | 还原剂去除 | 上市 | [ |
HPV九价 | 厦门万泰 | 大肠杆菌 | HPV L1 | HPV6/11/16/18/31/33/45/52/58 | 还原剂去除 | 临床Ⅲ/CTR20210365 | [ |
ENGERIXB/Fendrix | GSK | 酵母 | HBV/HBsAg | HBsAg | 多步纯化 | 上市 | [ |
Recombivax | MERCK | 酵母 | HBV/HBsAg | HBsAg | 多步纯化 | 上市 | [ |
SARS-CoV-2 | Novavax | 昆虫细胞 | SARS-CoV-2/S nanoparticle | SARS-CoV-2 Spike | 去污剂去除 | 上市 | [ |
NanoFluTM | Novavax | 昆虫细胞 | HA nanoparticle | Influenza virus HA | 去污剂去除 | PhaseⅢ/NCT04120194 | https://clinicaltrals.gov |
系统名称 | 表达体系 | 药物成分 | 靶点 | 组装方式 | 参考文献 |
---|---|---|---|---|---|
MS2 | 大肠杆菌 | DOX | 肝癌细胞SP94靶点 | 低pH解聚/中性pH重组 | [ |
MS2 | 大肠杆菌 | siRNA | HeLa细胞 | 低pH解聚中性pH/重组 | [ |
P22 | 大肠杆菌 | 链霉亲和素/铁蛋白笼 | — | 变性剂解聚/变性剂 | [ |
Qβ | 大肠杆菌 | 荧光蛋白 | — | 变性剂解聚/变性剂 | [ |
HBc | 大肠杆菌 | DOX | 靶向RGD的肿瘤细胞 | 变性剂解聚/变性剂去除组装 | [ |
SV40 | 昆虫细胞 | DNA质粒 | — | 还原剂解聚/MgCl2重组 | [ |
JC | 酵母 | RNAi | IL10 | 渗透压改变 | [ |
HPV | 昆虫细胞 | DNA质粒 | — | 还原剂解聚/CaCl2重组 | [ |
CCMV | 植物/大肠杆菌 | SiRNA/Mrna/HRP | FOXA1 | 高盐解聚/低盐重组 | [ |
RV | 大肠杆菌 | DOX | 肝癌细胞 | 变性剂解聚/醋酸钠缓冲液重组 | [ |
表2 体外VLPs递送系统列表
Table 2 List of delivery system by in vitro VLPs
系统名称 | 表达体系 | 药物成分 | 靶点 | 组装方式 | 参考文献 |
---|---|---|---|---|---|
MS2 | 大肠杆菌 | DOX | 肝癌细胞SP94靶点 | 低pH解聚/中性pH重组 | [ |
MS2 | 大肠杆菌 | siRNA | HeLa细胞 | 低pH解聚中性pH/重组 | [ |
P22 | 大肠杆菌 | 链霉亲和素/铁蛋白笼 | — | 变性剂解聚/变性剂 | [ |
Qβ | 大肠杆菌 | 荧光蛋白 | — | 变性剂解聚/变性剂 | [ |
HBc | 大肠杆菌 | DOX | 靶向RGD的肿瘤细胞 | 变性剂解聚/变性剂去除组装 | [ |
SV40 | 昆虫细胞 | DNA质粒 | — | 还原剂解聚/MgCl2重组 | [ |
JC | 酵母 | RNAi | IL10 | 渗透压改变 | [ |
HPV | 昆虫细胞 | DNA质粒 | — | 还原剂解聚/CaCl2重组 | [ |
CCMV | 植物/大肠杆菌 | SiRNA/Mrna/HRP | FOXA1 | 高盐解聚/低盐重组 | [ |
RV | 大肠杆菌 | DOX | 肝癌细胞 | 变性剂解聚/醋酸钠缓冲液重组 | [ |
1 | GU Y, WEI M, WANG D, et al.. Characterization of an Escherichia coli-derived human papillomavirus type 16 and 18 bivalent vaccine[J]. Vaccine, 2017, 35(35 Pt B): 4637-4650. |
2 | LUA L H, CONNORS N K, SAINSBURY F, et al.. Bioengineering virus-like particles as vaccines[J]. Biotechnol. Bioengin., 2014, 111(3): 425-440. |
3 | JEEVANANDAM J, BARHOUM A, CHAN Y S, et al.. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations[J]. Beilstein J. Nanotechnol., 2018, 9: 1050-1074. |
4 | ROHOVIE M J, NAGASAWA M, SWARTZ J R. Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery[J]. Bioeng. Transl. Med., 2017, 2(1): 43-57. |
5 | QIAN C, LIU X, XU Q, et al.. Recent progress on the versatility of virus-like particles[J/OL]. Vaccines (Basel), 2020, 8(1): 139[2020-03-20]. . |
6 | 董浩, 姜萌, 杨一鸣,等. 几种常见的细小病毒病毒样颗粒研究进展[J].中国兽医杂志, 2019, 55(2): 84-86. |
7 | 杨德辉, 徐鑫钰, 凌虹. 基于病毒样颗粒的免疫原研究进展[J].国际免疫学杂志, 2021, 44(5): 557-562. |
8 | WEI M, WANG D, LI Z, et al.. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro[J]. Emerg. Microbes. Infect., 2018, 7(1): 1-12. |
9 | 李少伟, 王致萍, 池鑫,等. 人乳头瘤病毒疫苗的研究进展[J].厦门大学学报(自然科学版), 2021, 60(2): 290-305. |
10 | HUANG X, WANG X, ZHANG J, et al.. Escherichia coli-derived virus-like particles in vaccine development[J/OL]. NPJ Vaccines, 2017, 2(1): 3[2017-02-09]. . |
11 | BAJAJ S, BANERJEE M. In vitro assembly of polymorphic virus-like particles from the capsid protein of a nodavirus[J]. Virology, 2016, 496: 106-115. |
12 | LIEKNINA I, KALNINS G, AKOPJANA I, et al.. Production and characterization of novel ssRNA bacteriophage virus-like particles from metagenomic sequencing data[J]. J. Nanobiotechnol., 2019, 17(1): 1-14. |
13 | LE D T, RADUKIC M T, MULLER K M. Adeno-associated virus capsid protein expression in Escherichia coli and chemically defined capsid assembly[J]. Sci. Rep., 2019, 9(1): 1-10. |
14 | SPICE A J, AW R, BRACEWELL D G, et al.. Synthesis and assembly of hepatitis B virus-like particles in a Pichia pastoris cell-free system[J/OL]. Front. Bioeng. Biotechnol., 2020, 8: 72[2020-02-14]. . |
15 | ASHLEY C E, CARNES E C, PHILLIPS G K, et al.. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles[J]. ACS Nano., 2011, 5(7): 5729-5745. |
16 | MCCARTHY M P, WHITE W I, PALMER-HILL F, et al.. Quantitative disassembly and reassembly of human papillomavirus type 11 viruslike particles in vitro[J]. J. Virol., 1998, 72(1): 32-41. |
17 | VILLAGRANA-ESCARENO M V, REYNAGA-HERNANDEZ E, GALICIA-CRUZ O G, et al.. VLPs derived from the CCMV plant virus can directly transfect and deliver heterologous genes for translation into mammalian cells[J/OL]. Biomed. Res. Int., 2019, 2019: 4630891[2019-10-29]. . |
18 | LAM P, STEINMETZ N F. Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles[J]. Biomater. Sci., 2019, 7(8): 3138-3142. |
19 | FANG P Y, GOMEZ RAMOS L M, HOLGUIN S Y, et al.. Functional RNAs: combined assembly and packaging in VLPs[J]. Nucl. Acids Res., 2017, 45(6): 3519-3527. |
20 | SHAN W, ZHANG D, WU Y, et al.. Modularized peptides modified HBc virus-like particles for encapsulation and tumor-targeted delivery of doxorubicin[J]. Nanomedicine, 2018, 14(3): 725-734. |
21 | LEE E B, KIM J H, HUR W, et al.. Liver-specific gene delivery using engineered virus-like particles of hepatitis E virus[J/OL]. Sci. Rep., 2019, 9(1): 1616[2019-02-07]. . |
22 | CERQUEIRA C, PANG Y Y, DAY P M, et al.. A cell-free assembly system for generating infectious human papillomavirus 16 capsids implicates a size discrimination mechanism for preferential viral genome packaging[J]. J. Virol., 2016, 90(2): 1096-1107. |
23 | CARL A, CERQUEIR A, CYNTHI A, et al.. Efficient production of papillomavirus gene delivery vectors in defined in vitro reactions[J]. Mol. Ther. Methods Clin. Dev., 2017, 16(5): 165-179. |
24 | PERLMUTTER J D, HAGAN M F. Mechanisms of virus assembly[J]. Annu. Rev. Phys Chem., 2015, 66: 217-239. |
25 | BARKLIS E, ALFADHLI A, MCQUAW C, et al.. Characterization of the in vitro HIV-1 capsid assembly pathway[J]. J. Mol. Boil., 2009, 387(2): 376-389. |
26 | JOHNSON J M, TANG J, NYAME Y, et al.. Regulating self-assembly of spherical oligomers[J]. Nano. Lett., 2005, 5(4): 765-770. |
27 | DOMINY B N, PERL D, SCHMID F X, et al.. The effects of ionic strength on protein stability: the cold shock protein family[J]. J. Mol. Biol., 2002, 319(2): 541-554. |
28 | XU J, GUO H C, WEI Y Q, et al.. Self-assembly of virus-like particles of canine parvovirus capsid protein expressed from Escherichia coli and application as virus-like particle vaccine[J]. Appl. Microbiol. Biotechnol., 2014, 98(8): 3529-3538. |
29 | SANCHEZ-RODRIGUEZ S P, MUNCH-ANGUIANO L, ECHEVERRIA O, et al.. Human parvovirus B19 virus-like particles: In vitro assembly and stability[J]. Biochimie, 2012, 94(3): 870-878. |
30 | JABALLAH S A, BAILEY G D, DESFOSSES A, et al.. In vitro assembly of the Rous Sarcoma Virus capsid protein into hexamer tubes at physiological temperature[J]. Sci. Rep., 2017, 7(1): 1-17. |
31 | 曹佳媛, 田明尧, 辛舒,等. 以乙型肝炎病毒核心蛋白为载体的PRRSV病毒样颗粒疫苗的构建[J].中国兽医科学, 2015, 45(10): 1000-1004. |
32 | GARMANN R F, COMAS-GARCIA M, GOPAL A, et al.. The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions[J]. J. Mol. Biol., 2014, 426(5): 1050-1060. |
33 | CADENA-NAVA R D, COMAS-GARCIA M, GARMANN R F, et al.. Self-assembly of viral capsid protein and RNA molecules of different sizes: requirement for a specific high protein/RNA mass ratio[J]. J. Virol., 2012, 86(6): 3318-3126. |
34 | DE RUITER M V, VAN DER HEE R M, DRIESSEN A J M, et al.. Polymorphic assembly of virus-capsid proteins around DNA and the cellular uptake of the resulting particles[J]. J. Control. Release., 2019, 307: 342-354. |
35 | COMAS-GARCIA M, KROUPA T, DATTA S A, et al.. Efficient support of virus-like particle assembly by the HIV-1 packaging signal[J/OL]. Elife, 2018, 7: e38438[2018-08-02]. . |
36 | KUNKEL M, LORINCZI M, RIJNBRAND R, et al.. Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein[J]. J. Virol., 2001, 75(5): 2119-2129. |
37 | SARKER S, TERRON M C, KHANDOKAR Y, et al.. Structural insights into the assembly and regulation of distinct viral capsid complexes[J/OL]. Nat. Commun., 2016, 7: 13014[2016-10-04]. . |
38 | VAN ROSMALEN M G M, KAMSMA D, BIEBRICHER A S, et al.. Revealing in real-time a multistep assembly mechanism for SV40 virus-like particles[J/OL]. Sci. Adv., 2020, 6(16): eaaz1639[2020-04-15]. . |
39 | MOHSEN M O, GOMES A C, VOGEL M, et al.. Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system[J/OL]. Vaccines (Basel), 2018, 6: 37[2018-07-02]. . |
40 | SANCHEZ-RODRIGUEZ S P, MORAN-GARCIA A C, BOLONDURO O, et al.. Enhanced assembly and colloidal stabilization of primate erythroparvovirus 1 virus-like particles for improved surface engineering[J]. Acta. Biomater., 2016, 35:206-214. |
41 | LAMPEL A, BRAM Y, LEVY-SAKIN M, et al.. The effect of chemical chaperones on the assembly and stability of HIV-1 capsid protein[J]. PLoS ONE, 2013, 8(4): 25-29. |
42 | SINN S, YANG L, BIEDERMANN F, et al.. Templated formation of luminescent virus-like particles by tailor-made Pt(II) amphiphiles[J]. J. Am. Chem. Soc., 2018, 140(6): 2355-2362. |
43 | MACH H, MIDDAUGH C R, LEWIS R V. Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins[J]. Anal. Biochem., 1992, 200(1): 74-80. |
44 | MACH H, MIDDAUGH C R. Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy[J]. Anal. Biochem., 1994, 222(2): 323-331. |
45 | WALKER J M. The bicinchoninic acid (BCA) assay for protein quantitation[J]. Methods Mol. Biol., 1994, 3: 5-8. |
46 | DASHTI N H, ABIDIN R S, SAINSBURY F. Programmable in vitro coencapsidation of guest proteins for intracellular delivery by virus-like particles[J]. ACS Nano., 2018, 12(5): 4615-4623. |
47 | GLASGOW J E, CAPEHART S L, FRANCIS M B, et al.. Osmolyte-mediated encapsulation of proteins inside MS2 viral capsids[J]. ACS Nano, 2012, 6(10): 8658-8664. |
48 | TIAN J H, PATEL N, HAUPT R, et al.. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice[J/OL]. Nat. Commun., 2021, 12(1): 372[2021-01-14]. . |
49 | CHUNG Y H, BEISS V, FIERING S N, et al.. COVID-19 vaccine frontrunners and their nanotechnology design[J]. ACS Nano., 2020, 14(10): 12522-12537. |
50 | ZHANG X, WEI M, PAN H, et al.. Robust manufacturing and comprehensive characterization of recombinant hepatitis E virus-like particles in Hecolin[J]. Vaccine, 2014, 32(32): 4039-4050. |
51 | VALBUENA A, MAITY S, MATEU M G, et al.. Visualization of single molecules building a viral capsid protein lattice through stochastic pathways[J]. ACS Nano, 2020, 14(7): 8724-8734. |
52 | LI C, KNELLER A R, JACOBSON S C, et al.. Single particle observation of SV40 VP1 polyanion-induced assembly shows that substrate size and structure modulate capsid geometry[J]. ACS Chem Biol., 2017, 12(5): 1327-1334. |
53 | MEDRANO M, FUERTES M A, VALBUENA A, et al.. Imaging and quantitation of a succession of transient intermediates reveal the reversible self-assembly pathway of a simple icosahedral virus capsid[J]. J. Am. Chem. Soc., 2016, 138(47): 15385-15396. |
54 | IGNATIOU A, BRASILES S, SADEK F M, et al.. Structural transitions during the scaffolding-driven assembly of a viral capsid[J/OL]. Nat. Commun., 2019, 10(1): 4840[2019-10-24]. . |
55 | MARCHETTI M, KAMSMA D, CAZARES VARGAS E, et al.. Real-time assembly of viruslike nucleocapsids elucidated at the single-particle level[J]. Nano. Lett., 2019, 19(8): 5746-5753. |
56 | UCHIHASHI T, SCHEURING S. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes[J]. Biochim. Biophys. Acta. Gen. Subj., 2018, 1862(2): 229-240. |
57 | ROLDAO A, MELLADO M C, CASTILHO L R, et al.. Virus-like particles in vaccine development[J]. Expert Rev. Vaccines, 2010, 9(10): 1149-1176. |
58 | JENNINGS G T, BACHMANN M F. The coming of age of virus-like particle vaccines[J]. Biol. Chem., 2008, 389(5): 521-536. |
59 | 贺蕾, 包小华, 李相梅,等. 人乳头瘤病毒6型L1蛋白的原核表达及免疫原性评价[J]. 中国生物制品学杂志, 2022, 35(8): 949-953. |
60 | CHACKERIAN B, LENZ P, LOWY D R, et al.. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles[J]. J. Immunol., 2002, 169(11): 6120-6126. |
61 | ZABEL F, MOHANAN D, BESSA J, et al.. Viral particles drive rapid differentiation of memory B cells into secondary plasma cells producing increased levels of antibodies[J]. J. Immunol., 2014, 192(12): 5499-5508. |
62 | 刘丽琴, 陈婷婷, 李少伟,等. 大肠杆菌表达系统在基因工程疫苗研发中的应用与策略优化[J]. 中国新药杂志, 2020, 29(21): 2434-2442. |
63 | MARINI A, ZHOU Y, LI Y, et al.. A universal plug-and-display vaccine carrier based on HBsAg VLP to maximize effective antibody response[J/OL]. Front. Immunol., 2019, 10: 2931[2019-12-12]. . |
64 | European Medicines Agency Gardasil. EPAR—Scientific discussion[EB/OL]. [2022-11-17]. . |
65 | European Medicines Agency Gardasil 9. EPAR-Productinformation-EMA/CHMP/ 76591/2015[EB/OL]. [2022-11-17]. . |
66 | European Medicines Agency Cervarix. EPAR—scientific discussion[EB/OL]. [2022-11-17]. . |
67 | ZHENG M, JIANG J, ZHANG X, et al.. Characterization of capsid protein (p495) of hepatitis E virus expressed in Escherichia coli and assembling into particles in vitro[J]. Vaccine, 2018, 36(16): 2104-2111. |
68 | U.S. Food and Drug Administration Summary for Basis of Approval-ENGERIX-B[EB/OL]. [2022-11-17]. downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ UCM110155.pdf. |
69 | MCALEER W J, BUYNAK E B, MAIGETTER R Z, et al.. Human hepatitis B vaccine from recombinant yeast[J]. Nature, 1984, 307(5947): 178-180. |
70 | STEINMETZ N F. Viral nanoparticles as platforms for next-generation therapeutics and imaging devices[J]. SAmedicine, 2010, 6(5): 634-641. |
71 | GALAWAY F A, STOCKLEY P G. MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform[J]. Mol. Pharm., 2013, 10(1): 59-68. |
72 | WAGHWANI H K, UCHIDA M, FU C Y, et al.. Virus-Like Particles (VLPs) as a platform for hierarchical compartmentalization[J]. Biomacromolecules, 2020, 21(6): 2060-2072. |
73 | KIMCHI-SARFATY C, BEN-NUN-SHAUL O, RUND D, et al.. In vitro-packaged SV40 pseudovirions as highly efficient vectors for gene transfer[J]. Hum. Gene. Ther., 2002, 13(2): 299-310. |
74 | CHOU M I, HSIEH Y F, WANG M, et al.. In vitro and in vivo targeted delivery of IL-10 interfering RNA by JC virus-like particles[J]. J. Biomed. Sci., 2010, 17(1): 1-9. |
75 | KIMCHI-SARFATY C, VIEIRA W D, DODDS D, et al.. SV40 Pseudovirion gene delivery of a toxin to treat human adenocarcinomas in mice[J]. Cancer Gene. Ther., 2006, 13(7): 648-657. |
76 | JOHNSON J E, SPEIR J A. Quasi-equivalent viruses: a paradigm for protein assemblies[J]. J. Ogy, 1997, 269(5): 665-675. |
77 | BIDDLECOME A, HABTE H H, MCGRATH K M, et al.. Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like particles[J/OL]. PLoS ONE, 2019, 14(6): e0215031[2019-06-04]. . |
78 | STEINBACH S, WISTUBA A, BOCK T, et al.. Assembly of adeno-associated virus type 2 capsids in vitro[J]. J. Gen. Virol., 1997, 78: 1453-1462. |
[1] | 陈可仁, 汪未申, 朱龙佼, 张洋子, 贺晓云, 黄昆仑, 许文涛. 核酸自组装纳米递送载体的研究进展[J]. 生物技术进展, 2022, 12(3): 352-357. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部