1 |
赵国屏.合成生物学:开启生命科学“会聚”研究新时代[J].中国科学院院刊,2018,33(11):1135-1149.
|
2 |
张先恩. 中国合成生物学发展回顾与展望[J]. 中国科学:生命科学,2019,49(12):1543-1572.
|
3 |
MENG F, ELLIS T. The second decade of synthetic biology: 2010-2020[J/OL]. Nat. Commun., 2020, 11(1): 5174[2021-04-11]. .
|
4 |
LI J, ZHAO H, ZHENG L, et al.. Advances in synthetic biology and biosafety governance[J/OL]. Front. Bioeng. Biotechnol., 2021, 30(9): 598087[2021-04-11]. .
|
5 |
LI Y, LAN S, RYBERG M, et al.. A quantitative roadmap for China towards carbon neutrality in 2060 using methanol and ammonia as energy carriers[J/OL]. iScience, 2021, 24(6): 102513[2021-04-11]. .
|
6 |
SHIH C F, ZHANG T, LI J, et al.. Powering the future with liquid sunshine[J]. Joule,2018, 2: 1925-1949.
|
7 |
DOUGLAS R M, PAVEL V C, JAECHEOL C, et al.. A roadmap to the ammonia economy[J]. Joule, 2020, 4: 1186-1205.
|
8 |
WANG L, XIA M, WANG H, et al.. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2: 1055-1074.
|
9 |
LIN Y, RICHARDNAYAK L, RENÉBAÑARES A. Reaction: "green” ammonia production[J]. Chem, 2017, 3: 709-714.
|
10 |
GIBSON D G, GLASS J I, LARTIGUE C, et al.. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987): 52-56.
|
11 |
HUTCHISON C A, CHUANG R Y, NOSKOV V N, et al.. Design and synthesis of a minimal bacterial genome[J/OL]. Science, 2016, 351: 1414[2022-04-12]. .
|
12 |
PELLETIER J F, SUN L, WISE K S, et al.. Genetic requirements for cell division in a genomically minimal cell[J]. Cell, 2021, 184(9): 2430-2440.
|
13 |
RICHARDSON S M, MITCHELL L A, STRACQUADANIO G, et al.. Design of a synthetic yeast genome[J]. Science, 2017, 355(6329): 1040-1044.
|
14 |
SHAO Y, LU N, WU Z, et al.. Creating a functional single-chromosome yeast[J]. Nature, 2018, 560(7718): 331-335.
|
15 |
XU Z, HUECKEL T, IRVINE W T M, et al.. Transmembrane transport in inorganic colloidal cell-mimics[J]. Nature, 2021, 597(7875): 220-224.
|
16 |
JOHN J, RICHARD E, ALEXANDER P, et al.. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
|
17 |
LIEW F E, NOGLE R, ABDALLA T, et al.. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale[J]. Nat. Biotechnol., 2022, 40(3): 335-344.
|
18 |
ROBERTSON W E, FUNKE L F H, DE LA TORRE D, et al.. Sense codon reassignment enables viral resistance and encoded polymer synthesis[J]. Science, 2021, 372(6546): 1057-1062.
|
19 |
VOIGT C A. Synthetic biology 2020-2030: six commerciallyavailable products that are changing our world[J/OL]. Nat. Commun., 2020, 11(1): 6379[2022-04-11]. .
|
20 |
BENJAMIN M, BJÖRN W, DECKER W, et al.. Food for thought: the protein transformation[J]. Ind. Biotechnol., 2021, 17(3): 125-133.
|
21 |
CHUI M, EVERS M, MANYIKA J, et al.. The bio revolution:innovations transforming economies, societies and our lives[R]. McKinsey Global Institute, 2020.
|
22 |
ROELL M S, ZURBRIGGEN M D. The impact of synthetic biology for future agriculture and nutrition[J]. Curr. Opin. Biotechnol., 2020, 61: 102-109.
|
23 |
林敏.农业生物育种技术的发展历程及产业化对策[J]. 生物技术进展, 2021,11(4):405-417.
|
24 |
张立新,卢从明,彭连伟,等.利用合成生物学原理提高光合作用效率的研究进展[J].生物工程学报,2017,33(3):486-493.
|
25 |
BATISTA-SILVA W, FONSECA-PEREIRA P D A, MARTINS A O, et al.. Engineering improved photosynthesis in the era of synthetic biology[J/OL]. Plant Commun., 2020, 1(2): 100032[2022-04-11]. .
|
26 |
GOOD A. Toward nitrogen-fixing plants[J]. Science, 2018, 359: 869-870.
|
27 |
燕永亮,田长富,杨建国,等.人工高效生物固氮体系创建及其农业应用[J].生命科学,2021,33:1532-1543.
|
28 |
林章凛,林敏. 微生物和植物抗逆性元器件的合成生物学研究[J].生物产业技术,2013,4:7-17.
|
29 |
李新海,谷晓峰,马有志,等.农作物基因设计育种发展现状与展望[J]. 中国农业科技导报,2020,22(8):1-4.
|
30 |
SEXTON A E, GARNETT T, LORIMER J. Framing the future of food: the contested promises of alternative proteins[J]. Environ. Plan. E Nat. Space, 2019, 2(1): 47-72.
|
31 |
LV X Q, WU Y K, GONG M Y, et al.. Synthetic biology for future food: research progress and future directions[J/OL]. Future Foods, 2021, 3: 100025[2022-04-11]. .
|
32 |
MOUAT M J, PRINCE R, ROCHE M M. Making value out of ethics: The emerging economic geography of lab-grown meat and other animal-free food products[J]. Econom. Geogr., 2019, 95(2): 136-158.
|
33 |
RISCHER H, SZILVAY G R, OKSMAN-CALDENTEY K M. Cellular agriculture-industrial biotechnology for food and materials[J]. Curr. Opin. Biotechnol., 2020, 61: 128-134.
|
34 |
GHOSH A, MISRA S, BHATTACHARYYA R, et al.. Agriculture, dairy and fishery farming practices and greenhouse gas emission footprint: a strategic appraisal for mitigation[J]. Environ. Sci. Pollut. Res. Int., 2020, 27(10): 10160-10184.
|
35 |
GLEIZER S, BEN-NISSAN R, BAR-ON Y M, et al.. Conversion of Escherichia coli to generate all biomass carbon from CO2 [J]. Cell, 2019, 179(6): 1255-1263.
|
36 |
CAI T, SUN H, QIAO J, et al.. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527.
|
37 |
NACKLER N, HEIJSTRA B D, RASOR B J, et al.. Stepping on the gas to a circular economy: accelerating development of carbon-negative chemical production from gas fermentation[J]. Ann. Rev. Chem. Biomol. Eng., 2021, 12: 439-470.
|
38 |
World Economic Forum. Top 10 emerging technologies of 2021[R]. World Economic Forum, 2021.
|
39 |
涂涛,罗会颖,姚斌.蛋白质工程在饲料用酶研发中的应用研究进展[J]. 合成生物学, 2022, doi: 10.12211/2096-8280.2022-027 .
|
40 |
农业农村部市场预警专家委员会. 中国农业展望报告(2021—2030)[M]. 北京: 中国农业科学技术出版社, 2021.
|