[1] |
SUNG H, FERLAY J, SIEGEL R L, et al.. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J. Clin., 2021, 71(3): 209-249.
|
[2] |
ZHENG R S, CHEN R, HAN B F, et al.. Cancer incidence and mortality in China, 2022[J]. Chin. J. Oncol., 2024, 46(3): 221-231.
|
[3] |
CBIDARD F, KIAVUE N, JACOT W, et al.. Overall survival with circulating tumor cell count-driven choice of therapy in advanced breast cancer: a randomized trial[J]. J. Clin. Oncol., 2024, 42(4): 383-389.
|
[4] |
SZERENYI D, JARVAS G, GUTTMAN A. Multifaceted approaches in epithelial cell adhesion molecule-mediated circulating tumor cell isolation[J/OL]. Molecules, 2025, 30(5): 976[2025-05-05]. .
|
[5] |
DING W, LOU C, QIU J, et al.. Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice[J]. Nanomedicine, 2016, 12(1): 235-244.
|
[6] |
GUO Z, JIN S, YANG M, et al.. Luminol/PtCo@rGO and Au@CNTs-based electrochemiluminescence cytosensor for ultrasensitive detection of breast cancer CTCs[J/OL]. Anal. Chim. Acta, 2025, 1335(000):343452[2025-07-30]. .
|
[7] |
CUI F, JI J, SUN J, et al.. A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells[J]. Anal. Bioanal. Chem., 2019, 411(5): 985-995.
|
[8] |
ZHANG H, JIANG H, SUN F, et al.. Rapid diagnosis of multidrug resistance in cancer by electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites[J]. Biosens. Bioelectron., 2011, 26(7): 3361-3366.
|
[9] |
AFREEN S, HE Z, XIAO Y, et al.. Nanoscale metal-organic frameworks in detecting cancer biomarkers[J]. J. Mater. Chem. B, 2020, 8(7): 1338-1349.
|
[10] |
JIAN X, XU J, YANG L, et al.. Intracellular metal-organic frameworks: integrating an all-in-one semiconductor electrode chip for therapy, capture, and quantification of circulating tumor cells[J]. Anal. Chem., 2020, 92(19): 13319-13326.
|
[11] |
HU M, LI C, WANG Z, et al.. Development of metal-organic framework-based dual antibody nanoparticles for the highly specific capture and gradual release of circulating tumor cells[J/OL]. Front. Bioeng. Biotechnol., 2022, 10: 806238[2025-05-05]. .
|
[12] |
WANG J, ZHANG Y, DONG M, et al.. Capture and release of circulating tumor cells stimulated by pH and NIR irradiation of magnetic Fe3O4@ZIF-8 nanoparticles[J/OL]. Colloids Surf. B Biointerfaces, 2023, 224: 113206[2025-05-05]. .
|
[13] |
WANG Z, WU Z, SUN N, et al.. Antifouling hydrogel-coated magnetic nanoparticles for selective isolation and recovery of circulating tumor cells[J]. J. Mater. Chem. B, 2021, 9(3): 677-682.
|
[14] |
丁丕,丁子鑫,马佳玲,等.基于CdSe/ZnS量子点和双抗体修饰的磁纳米颗粒用于多表型循环肿瘤细胞的高效富集与鉴定[J].分析化学,2023,51(5):821-832.
|
|
DING P, DING Z X, MA J L, et al.. Effective isolation, label and release of multitype circulating tumor cells base on CdSe/ZnS quantum dots and dual-antibody modified magnetic nanoparticles[]. Chin. J. Analy. Chem., 2023, 51(5):821-832.
|
[15] |
MA Y, ZHANG J, TIAN Y, et al.. Zwitterionic microgel preservation platform for circulating tumor cells in whole blood specimen[J/OL]. Nat. Commun., 2023, 14(1): 4958[2025-05-05]. .
|
[16] |
FRANKEN A, KRAEMER A, SICKING A, et al.. Comparative analysis of EpCAM high-expressing and low-expressing circulating tumour cells with regard to their clonal relationship and clinical value[J]. Br. J. Cancer, 2023, 128(9): 1742-1752.
|
[17] |
LI H, ZHU Y Z, XU L, et al.. Exploring new frontiers: cell surface vimentin as an emerging marker for circulating tumor cells and a promising therapeutic target in advanced gastric Cancer[J/OL]. J. Exp. Clin. Cancer Res., 2024, 43(1): 129[2025-05-05]. .
|
[18] |
CHEN J, XIE T, YANG J, et al.. Feasibility study of expressing epcam + /vimentin + CTC in prostate cancer diagnosis[J]. J. Cancer Res. Clin. Oncol., 2023, 149(11): 8699-8709.
|