[1] |
GIAQUINTO A N, SUNG H, NEWMAN L A, et al.. Breast cancer statistics 2024[J]. CA Cancer J. Clin., 2024, 74(6): 477-495.
|
[2] |
JIANG Z, JU Y, ALI A, et al.. Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer[J/OL]. Nat. Commun., 2023, 14(1): 4313[2025-06-04]. .
|
[3] |
NATHANSON S D, DETMAR M, PADERA T P, et al.. Mechanisms of breast cancer metastasis[J]. Clin. Exp. Metastasis, 2022, 39(1): 117-137.
|
[4] |
BROWN R B, BIGELOW P, DUBIN J A, et al.. High dietary phosphorus is associated with increased breast cancer risk in a U.S. cohort of middle-aged women[J/OL]. Nutrients, 2023, 15(17): 3735[2025-06-04]. .
|
[5] |
PASSARELLI M N, NEWCOMB P A, HAMPTON J M, et al.. Cigarette smoking before and after breast cancer diagnosis: mortality from breast cancer and smoking-related diseases[J]. J. Clin. Oncol., 2016, 34(12): 1315-1322.
|
[6] |
BENOWITZ N L. Nicotine and smokeless tobacco[J]. CA Cancer J. Clin., 1988, 38(4): 244-247.
|
[7] |
HECHT S S, HOFFMANN D. Tobacco-specific nitrosamines, an important group of carcinogens in tobacco and tobacco smoke[J]. Carcinogenesis, 1988, 9(6): 875-884.
|
[8] |
CHEN P C, LEE W Y, LING H H, et al.. Activation of fibroblasts by nicotine promotes the epithelial-mesenchymal transition and motility of breast cancer cells[J]. J. Cell. Physiol., 2018, 233(6): 4972-4980.
|
[9] |
COOKE J P, BITTERMAN H. Nicotine and angiogenesis: a new paradigm for tobacco-related diseases[J]. Ann. Med., 2004, 36(1): 33-40.
|
[10] |
ZHAN Y, WENG M, GUO Y, et al.. Identification and validation of the nicotine metabolism-related signature of bladder cancer by bioinformatics and machine learning[J/OL]. Front. Immunol., 2024, 15: 1465638[2025-06-04]. .
|
[11] |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J/OL]. Genome Biol., 2014, 15(12): 550[2025-06-04]. .
|
[12] |
WU T, HU E, XU S, et al.. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data[J/OL]. Innovation, 2021, 2(3): 100141[2025-06-04]. .
|
[13] |
YOSHIHARA K, SHAHMORADGOLI M, MARTÍNEZ E, et al.. Inferring tumour purity and stromal and immune cell admixture from expression data[J/OL]. Nat. Commun., 2013, 4: 2612[2025-06-04]. .
|
[14] |
NEWMAN A M, STEEN C B, LIU C L, et al.. Determining cell type abundance and expression from bulk tissues with digital cytometry[J]. Nat. Biotechnol., 2019, 37(7): 773-782.
|
[15] |
MAESER D, GRUENER R F, HUANG R S. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data[J/OL]. Brief. Bioinform., 2021, 22(6): bbab260[2025-06-04]. .
|
[16] |
COLEMAN M P, QUARESMA M, BERRINO F, et al.. Cancer survival in five continents: a worldwide population-based study (CONCORD)[J]. Lancet Oncol., 2008, 9(8): 730-756.
|
[17] |
KHODABANDEH Z, VALILO M, VELAEI K, et al.. The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy[J]. Breast Cancer, 2022, 29(5): 778-789.
|
[18] |
GRANDO S A. Connections of nicotine to cancer[J]. Nat. Rev. Cancer, 2014, 14(6): 419-429.
|
[19] |
TYAGI A, SHARMA S, WU K, et al.. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung[J/OL]. Nat. Commun., 2021, 12(1): 474[2025-06-04]. .
|
[20] |
ZHANG N, ZHU T, YU K, et al.. Elevation of O-GlcNAc and GFAT expression by nicotine exposure promotes epithelial-mesenchymal transition and invasion in breast cancer cells[J/OL]. Cell Death Dis., 2019, 10(5): 343[2025-06-04]. .
|
[21] |
OSANAI M, LEE G H. Nicotine-mediated suppression of the retinoic acid metabolizing enzyme CYP26A1 limits the oncogenic potential of breast cancer[J]. Cancer Sci., 2011, 102(6): 1158-1163.
|
[22] |
MURAYAMA M A, TAKADA E, TAKAI K, et al.. Nicotine treatment regulates PD-L1 and PD-L2 expression via inhibition of Akt pathway in HER2-type breast cancer cells[J/OL]. PLoS ONE, 2022, 17(1): e0260838[2025-06-04]. .
|
[23] |
LI X, WANG J, WANG L, et al.. Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging[J/OL]. Signal Transduct. Target. Ther., 2022, 7(1): 162[2025-06-04]. .
|
[24] |
WU K J, WANG W, WANG H D, et al.. Interfering with S100B-effector protein interactions for cancer therapy[J]. Drug Discov. Today, 2020, 25(9): 1754-1761.
|
[25] |
BAXTER R C. Endocrine and cellular physiology and pathology of the insulin-like growth factor acid-labile subunit[J]. Nat. Rev. Endocrinol., 2024, 20(7): 414-425.
|
[26] |
WANG Y W, CHENG H L, DING Y R, et al.. EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer[J]. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(1): 199-211.
|
[27] |
王言,周娟.PLK1通过自噬调节肿瘤的作用及研究进展[J].赣南医学院学报,2023,43(2):109-112.
|
|
WANG Y, ZHOU J. The role of PLK1 in regulating tumors through autophagy and the research progress[J]. J. Gannan Med. Univ., 2023, 43(2): 109-112.
|
[28] |
KUO Y C, CHEN C L, LEE K L, et al.. Nicotine-driven enhancement of tumor malignancy in triple-negative breast cancer via additive regulation of CHRNA9 and IGF1R[J]. J. Pathol., 2025, 266(2): 230-245.
|