1 |
JARASCH A, KOLL H, REGULA J T, et al.. Developability assessment during the selection of novel therapeutic antibodies[J]. J. Pharm. Sci., 2015, 104(6): 1885-1898.
|
2 |
LYU X C, ZHAO Q C, HUI J L, et al.. The global landscape of approved antibody therapies[J]. Antib. Ther., 2022, 5(4): 233-257.
|
3 |
ZINN S, VAZQUEZ-LOMBARDI R, ZIMMERMANN C, et al.. Advances in antibody-based therapy in oncology[J]. Nat. Cancer, 2023, 4: 165-180.
|
4 |
BEHRING E V, KITASATO S. Ueber das zustandekommen der diphtherie-immunität und der tetanus-immunität bei thieren[J]. Dtsch Med. Wochenschr., 1890, 16(49): 1113-1114.
|
5 |
KÖHLER G, MILSTEIN C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature, 1975, 256: 495-497.
|
6 |
POSNER J, BARRINGTON P, BRIER T, et al.. Monoclonal antibodies: past, present and future[J]. Handb. Exp. Pharmacol., 2019, 260: 81-141.
|
7 |
MORAES J Z, HAMAGUCHI B, BRAGGION C, et al.. Hybridoma technology: is it still useful?[J]. Curr. Res. Immunol., 2021, 2: 32-40.
|
8 |
HOLLIGER P, HUDSON P J. Engineered antibody fragments and the rise of single domains[J]. Nat. Biotechnol., 2005, 23: 1126-1136.
|
9 |
BAYER V. An overview of monoclonal antibodies[J/OL]. Semin. Oncol. Nurs., 2019, 35(5): 150927[2024-11-29]. .
|
10 |
WOLLINA U, TCHERNEV G, LOTTI T. Chimeric monoclonal antibody cetuximab targeting epidermal growth factor-receptor in advanced non-melanoma skin cancer[J]. Open Access Maced. J. Med. Sci., 2018, 6(1): 152-155.
|
11 |
ROH J, BYUN S J, SEO Y, et al.. Generation of a chickenized catalytic anti-nucleic acid antibody by complementarity-determining region grafting[J]. Mol. Immunol., 2015, 63(2): 513-520.
|
12 |
KIM J H, HONG H J. Humanization by CDR grafting and specificity-determining residue grafting[J]. Meth. Mol. Biol., 2012, 907: 237-245.
|
13 |
ALMAGRO J C, FRANSSON J. Humanization of antibodies[J]. Front. Biosci., 2008, 13: 1619-1633.
|
14 |
SAFDARI Y, FARAJNIA S, ASGHARZADEH M, et al.. Anti‑body humanization methods‑a review and update[J]. Biotechnol. Genet. Eng. Rev., 2013, 29(2): 175‑186.
|
15 |
杨懿祺,张志高,游小龙,等.抗体药物的发展与应用[J].生物技术进展,2022,12(3):358-365.
|
|
YANG Y Q, ZHANG Z G, YOU X L, et al.. Development and application of monoclonal antibody-based drug[J]. Curr. Biotechnol., 2022, 12(3): 358-365.
|
16 |
SMITH G P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface[J]. Transfus. Med. Rev., 1985, 228(4705): 1315-1317.
|
17 |
陈遥, 舒星富, 赵钰, 等. 单链抗体展示系统研究进展[J]. 生物工程学报, 2023, 39(9): 3681-3694.
|
|
CHEN Y, SHU X F, ZHAO Y, et al.. Single chain antibody fragment display systems: a review[J]. Chin. J. Biotechnol.,2023, 39(9): 3681-3694.
|
18 |
NAGUMO Y, FUJIWARA K, HORISAWA K, et al.. PURE mRNA display for in vitro selection of single-chain antibodies[J]. J. Biochem., 2016, 159(5): 519-526.
|
19 |
JOSEPHSON K, RICARDO A, SZOSTAK J W. mRNA display: from basic principles to macrocycle drug discovery[J]. Drug Discov. Today, 2014, 19(4): 388-399.
|
20 |
CHUN J, BAI J, RYU S. Yeast surface display system for facilitated production and application of phage endolysin[J]. ACS Synth. Biol., 2020, 9(3): 508-516.
|
21 |
BOWERS P M, HORLICK R A, NEBEN T Y, et al.. Coupling mammalian cell surface display with somatic hypermutation for the discovery and maturation of human antibodies[J]. Proc. Natl. Acad. Sci. USA, 2011, 108(51): 20455-20460.
|
22 |
JIN Y J, YU D, TIAN X L, et al.. A novel and effective approach to generate germline-like monoclonal antibodies by integration of phage and mammalian cell display platforms[J]. Acta Pharmacol. Sin., 2022, 43: 954-962.
|
23 |
GREEN L L. Transgenic mouse strains as platforms for the successful discovery and development of human therapeutic monoclonal antibodies[J]. Curr. Drug Discov. Technol., 2014, 11(1): 74-84.
|
24 |
武瑞君,桑晓冬,李治非,等.抗体技术的研发现状与展望[J].中国药理学与毒理学杂志,2021,35(5):374-381.
|
|
WU R J, SANG X D, LI Z F, et al.. Development and prospect of antibody technology[J]. Chin. J. Pharmacol. Toxicol., 2021, 35(5): 374-381.
|
25 |
BRÜGGEMANN M, CASKEY H M, TEALE C, et al.. A repertoire of monoclonal antibodies with human heavy chains from transgenic mice[J]. Clin. Orthop. Relat. Res., 1989, 86(17): 6709-6713.
|
26 |
MURPHY A J, MACDONALD L E, STEVENS S, et al.. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice[J]. Proc. Natl. Acad. Sci. USA, 2014, 111(14): 5153-5158.
|
27 |
杨高松,马东杰.呼吸道传染病治疗中抗体药物的研发进展[J].生物技术进展,2020,10(5):441-447.
|
|
YANG G S, MA D J. Progress in research and development of antibodies for treatment of respiratory infectious diseases[J]. Curr. Biotechnol., 2020, 10(5): 441-447.
|
28 |
王海宁, 刘兴健, 高新桃, 等. SARS-CoV-2中和性纳米抗体的原核表达及中和活性检测[J]. 生物技术进展, 2022, 12(5): 754-759.
|
|
WANG H N, LIU X J, GAO X T, et al.. Prokaryotic expression and neutralization activity detection of SARS-CoV-2 neutralizing nanobody[J]. Curr. Biotechnol., 2022, 12(5): 754-759.
|
29 |
ROSENFELD R, NOY-PORAT T, MECHALY A, et al.. Post-exposure protection of SARS-CoV-2 lethal infected K18-hACE2 transgenic mice by neutralizing human monoclonal antibody[J/OL]. Nat. Commun., 2021, 12: 944[2024-12-30]. .
|
30 |
BAKER S, KRISHNA A, HIGHAM S, et al.. Exploiting human immune repertoire transgenic mice for protective monoclonal antibodies against antimicrobial resistant Acinetobacter baumannii [J/OL]. Nat. Commun., 2024, 15: 7979[2024-12-30]. .
|
31 |
CHUPP D P, RIVERA C E, ZHOU Y L, et al.. A humanized mouse that mounts mature class-switched, hypermutated and neutralizing antibody responses[J]. Nat. Immunol., 2024, 25: 1489-1506.
|
32 |
杨郑欣, 李琰, 张晓茜, 等. 单个B细胞抗体制备技术研究进展[J]. 中国兽医杂志, 2023, 59(8): 82-87.
|
|
YANG Z X, LI Y, ZHANG X Q, et al.. Research progress on single B cell antibody preparation technology[J]. Chin. J. Veter. Med., 2023, 59(8): 82-87.
|
33 |
ZOST S J, GILCHUK P, CHEN R E, et al.. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein[J]. Nat. Med., 2020, 26: 1422-1427.
|
34 |
DOU Y, XU K, DENG Y Q, et al.. Development of neutralizing antibodies against SARS-CoV-2, using a high-throughput single-B-cell cloning method[J]. Antib. Ther., 2023, 6(2): 76-86.
|
35 |
CAO Y L, SU B, GUO X H, et al.. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells[J]. Cell, 2020, 182(1): 73-84.
|
36 |
KHAN M, BI Y H, Zhang G Y, et al.. Microfluidics add-on technologies for single-cell analysis[J/OL]. Trac-Trend Anal. Chem., 2023, 167: 117257[2024-12-30]. .
|
37 |
SINGH S, GUPTA H, SHARMA P, et al.. Advances in Artificial Intelligence (AI)-assisted approaches indrug screening[J/OL]. Artif. Intell. Chem., 2024, 2: 100039[2024-12-30]. .
|
38 |
ARNOLD C. Inside the nascent industry of AI-designed drugs[J]. Nat. Med., 2023, 29: 1292-1295.
|
39 |
JAYATUNGA M K P, AYERS M, BRUENS L, et al.. How successful are AI-discovered drugs in clinical trials? A first analysis and emerging lessons[J/OL]. Drug Discov. Today, 2024, 29(6): 104009[2024-12-30]. .
|
40 |
单士喆, 文博, 乔天慈, 等. 人工智能在药物再利用治疗新型冠状病毒感染研究中的应用及问题分析[J]. 中国药理学与毒理学杂志, 2024, 38(4): 294-303.
|
|
SHAN S Z, WEN B, QIAO T C, et al.. Application and analysis of problems of artificial intelligence in drug repurposing for Corona Virus Disease 2019(COVID-19)[J]. Chin. J. Pharmacol. Toxicol., 2024, 38(4): 294-303.
|
41 |
OLAWADE D B, TEKE J, FAPOHUNDA O, et al.. Leveraging artificial intelligence in vaccine development: anarrative review[J/OL]. J. Microbiol. Methods, 2024, 224: 106998[2024-12-30]. .
|