生物技术进展 ›› 2024, Vol. 14 ›› Issue (6): 1032-1041.DOI: 10.19586/j.2095-2341.2024.0108
孔蒙蒙(), 金静静, 卢鹏, 顾梦丽, 陈千思, 曹培健, 张剑锋, 陶界锰(
)
收稿日期:
2024-05-27
接受日期:
2024-07-08
出版日期:
2024-11-25
发布日期:
2024-12-27
通讯作者:
陶界锰
作者简介:
孔蒙蒙 E-mail: 2477658055@qq.com;
基金资助:
Mengmeng KONG(), Jingjing JIN, Peng LU, Mengli GU, Qiansi CHEN, Peijian CAO, Jianfeng ZHANG, Jiemeng TAO(
)
Received:
2024-05-27
Accepted:
2024-07-08
Online:
2024-11-25
Published:
2024-12-27
Contact:
Jiemeng TAO
摘要:
为提高工程菌株纤维素酶产酶效率,采用单因素试验和正交试验法对高产纤维素酶枯草芽孢杆菌(Bacillus subtilis)工程菌株C36、CM、KF、GH5的发酵培养基和培养条件进行优化。结果表明,工程菌株C36、CM、KF和GH5在最优发酵条件下的产酶效率显著提高。发酵条件优化后,工程菌株CM的纤维素酶活最高,在醇化烟叶添加量7%、蛋白胨添加量0.8%、pH 6.1、发酵温度37 ℃、转速220 r·min-1、装液量40 mL及发酵时间96 h的条件下,其羧甲基纤维素(carboxymethylcellulose, CMC)酶活和滤纸酶活(filter paper activity, FPA)分别达到504.95和222.11 U·mL-1。发酵条件优化后,工程菌株GH5的纤维素酶活提升倍数最高,在醇化烟叶添加量6%、蛋白胨添加量0.9%、pH 6.1、发酵温度37 ℃、转速220 r·min-1、装液量40 mL及发酵时间96 h的条件下,其CMC和FPA酶活分别是优化前的28.55和9.68倍。
中图分类号:
孔蒙蒙, 金静静, 卢鹏, 顾梦丽, 陈千思, 曹培健, 张剑锋, 陶界锰. 高产纤维素酶工程菌株产酶条件优化[J]. 生物技术进展, 2024, 14(6): 1032-1041.
Mengmeng KONG, Jingjing JIN, Peng LU, Mengli GU, Qiansi CHEN, Peijian CAO, Jianfeng ZHANG, Jiemeng TAO. Optimization of Enzyme Production Conditions of High-yielding Cellulase Engineering Strains[J]. Current Biotechnology, 2024, 14(6): 1032-1041.
水平 | A:碳源/% | B:氮源/% | C:初始pH |
---|---|---|---|
1 | 5 | 0.8 | 5.5 |
2 | 6 | 0.9 | 6.1 |
3 | 7 | 1.0 | 6.6 |
表1 发酵培养基条件正交试验因素与水平
Table 1 Factors and levels of orthogonal experiments for fermentation medium conditions
水平 | A:碳源/% | B:氮源/% | C:初始pH |
---|---|---|---|
1 | 5 | 0.8 | 5.5 |
2 | 6 | 0.9 | 6.1 |
3 | 7 | 1.0 | 6.6 |
水平 | D:发酵温度/℃ | E:转速/(r·min-1) | F:装液量/mL | G:发酵时间/h |
---|---|---|---|---|
1 | 34 | 180 | 40 | 72 |
2 | 37 | 200 | 80 | 96 |
3 | 40 | 220 | 100 | 120 |
表2 发酵培养条件正交试验因素与水平
Table 2 Factors and levels of orthogonal experiments for fermentation culture conditions
水平 | D:发酵温度/℃ | E:转速/(r·min-1) | F:装液量/mL | G:发酵时间/h |
---|---|---|---|---|
1 | 34 | 180 | 40 | 72 |
2 | 37 | 200 | 80 | 96 |
3 | 40 | 220 | 100 | 120 |
图1 不同碳源和氮源对工程菌株纤维素酶活的影响A~B:不同碳源对工程菌株CMC和FPA酶活的影响;C~D:不同氮源对工程菌株CMC酶活和FPA酶活的影响;同一菌株不同处理上的不同小写字母表示在P<0.05水平上具有统计学意义。
Fig. 1 Effects of different carbon and nitrogen sources on cellulase activity of engineered strains
图2 不同碳源添加量、氮源添加量、初始pH对工程菌株纤维素酶活的影响A、B:不同醇化烟叶添加量对工程菌株CMC酶活和FPA酶活的影响;C、D:不同蛋白胨添加量对工程菌株CMC酶活和FPA酶活的影响;E、F:不同初始pH对工程菌株CMC酶活和FPA酶活的影响
Fig. 2 Effects of different additions of carbon source and nitrogen source and different initial pH values on cellulase activities of engineered strains.
正交编号 | A:醇化烟叶 | B:蛋白胨 | C:pH |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 1 | 2 | 3 |
3 | 1 | 3 | 2 |
4 | 2 | 1 | 3 |
5 | 2 | 2 | 2 |
6 | 2 | 3 | 1 |
7 | 3 | 1 | 2 |
8 | 3 | 2 | 1 |
9 | 3 | 3 | 3 |
表3 C36、CM、KF和GH5发酵培养基正交试验表
Table 3 Orthogonal test of fermentation medium conditions for C36, CM, KF and GH5
正交编号 | A:醇化烟叶 | B:蛋白胨 | C:pH |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 1 | 2 | 3 |
3 | 1 | 3 | 2 |
4 | 2 | 1 | 3 |
5 | 2 | 2 | 2 |
6 | 2 | 3 | 1 |
7 | 3 | 1 | 2 |
8 | 3 | 2 | 1 |
9 | 3 | 3 | 3 |
图3 菌株发酵培养基优化正交实验结果A:C36正交实验结果;B:CM正交实验结果;C:KF正交实验结果;D:GH5正交实验结果
Fig. 3 Results of orthogonaltests on the optimization of fermentation medium for strains
图4 不同培养条件对工程菌株纤维素酶酶活的影响A、B:不同温度对工程菌株CMC酶活和FPA酶活的影响;C、D:不同摇床转速对工程菌株CMC酶活和FPA酶活的影响;E、F:不同装液量对工程菌株CMC酶活和FPA酶活的影响;G、H:不同发酵时间工程菌株CMC酶活和FPA酶活
Fig. 4 Effects of different culture conditions on cellulase activities of engineered strains
编号 | D:发酵温度 | E:转速 | F:装液量 | G:发酵时间 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 |
4 | 2 | 1 | 2 | 3 |
5 | 2 | 2 | 3 | 1 |
6 | 2 | 3 | 1 | 2 |
7 | 3 | 1 | 3 | 2 |
8 | 3 | 2 | 1 | 3 |
9 | 3 | 3 | 2 | 1 |
表4 C36、CM、KF和GH5发酵培养条件正交实验表
Table 4 Orthogonal test of fermentation culture conditions for C36, CM, KF and GH5
编号 | D:发酵温度 | E:转速 | F:装液量 | G:发酵时间 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 |
4 | 2 | 1 | 2 | 3 |
5 | 2 | 2 | 3 | 1 |
6 | 2 | 3 | 1 | 2 |
7 | 3 | 1 | 3 | 2 |
8 | 3 | 2 | 1 | 3 |
9 | 3 | 3 | 2 | 1 |
图5 菌株发酵培养条件优化正交实验结果A:C36正交实验结果;B:CM正交实验结果;C:KF正交实验结果;D:GH5正交实验结果
Fig. 5 Results of orthogonal tests on the optimization of fermentation conditions for strains
菌株 | 醇化烟叶/% | pH | 蛋白胨/% | 发酵温度/℃ | 转速/(r·min-1) | 装液量/mL | 发酵时间/h | CMC酶活/(U·mL-1) | FPA酶活/(U·mL-1) |
---|---|---|---|---|---|---|---|---|---|
C36 | 7 | 5.5 | 0.9 | 37 | 220 | 40 | 96 | 542.95 | 191.03 |
CM | 7 | 6.1 | 0.8 | 37 | 220 | 40 | 96 | 504.95 | 222.11 |
KF | 7 | 6.1 | 0.8 | 37 | 220 | 40 | 96 | 545.57 | 193.98 |
GH5 | 6 | 6.1 | 0.9 | 37 | 220 | 40 | 96 | 530.78 | 193.76 |
表5 C36、CM、KF和GH5的最优发酵条件下的酶活
Table 5 Cellulase activities under the optimal combinations of C36, CM, KF and GH5
菌株 | 醇化烟叶/% | pH | 蛋白胨/% | 发酵温度/℃ | 转速/(r·min-1) | 装液量/mL | 发酵时间/h | CMC酶活/(U·mL-1) | FPA酶活/(U·mL-1) |
---|---|---|---|---|---|---|---|---|---|
C36 | 7 | 5.5 | 0.9 | 37 | 220 | 40 | 96 | 542.95 | 191.03 |
CM | 7 | 6.1 | 0.8 | 37 | 220 | 40 | 96 | 504.95 | 222.11 |
KF | 7 | 6.1 | 0.8 | 37 | 220 | 40 | 96 | 545.57 | 193.98 |
GH5 | 6 | 6.1 | 0.9 | 37 | 220 | 40 | 96 | 530.78 | 193.76 |
1 | 李鹏,陈秀珍,庄文颖.高产纤维素酶的拟康宁木霉菌株8985固态发酵条件优化[J].菌物学报,2021,40(4):743-758. |
LI P, CHEN X Z, ZHUANG W Y. Optimization of solid state fermentation conditions for the high cellulase producing strain Trichoderma koningiopsis 8985[J]. Mycosystema, 2021, 40(4): 743-758. | |
2 | 李昌珠,蒋丽娟,陈景震,等.产维素酶菌株SB-4的理化特性及产酶条件优化[J].湖南林业科技,2017,44(6):40-44. |
LI C Z, JIANG L J, CHEN J Z, et al.. Physiological and biochemical properties of a strain producing cellulose SB-4 and optimization of conditions for enzyme production[J]. Hunan For. Sci. Technol., 2017, 44(6): 40-44. | |
3 | 姜立春,赵丽萍,林寿露,等.纤维素降解菌的筛选、鉴定与产酶条件优化试验[J].黑龙江畜牧兽医(上半月),2017(6):166-172. |
JIANG L C, ZHAO L P, LIN S L, et al.. Screening, identification and optimization of enzyme production conditions of cellulose-degrading bacteria[J/OL]. Heilongjiang Animal Husb. Vet. Sci., 2017(6): 166-172. | |
4 | 陈兴,王文元,汪显国,等.烟叶纤维素降解菌的筛选、鉴定及其产酶条件优化[J].云南大学学报(自然科学版),2015,37(2):323-328. |
CHEN X, WANG W Y, WANG X G, et al.. Screening, identification of cellulose-decomposing strain from aging flue-cured tobacco leaves and optimization of its fermentation condition[J]. J. Yunnan Univ. Nat. Sci. Ed., 2015, 37(2): 323-328. | |
5 | 赵鑫,张红,门中华,等.纤维素酶的研究与应用进展[J].化学与生物工程,2023,40(9):1-9. |
ZHAO X, ZHANG H, MEN Z H, et al.. Research and application progress in cellulase[J]. Chem. Bioeng., 2023, 40(9): 1-9. | |
6 | DATTA R, KELKAR A, BARANIYA D, et al.. Enzymatic degradation of lignin in soil: a review[J/OL]. Sustainability, 2017, 9(7): 1163[2024-07-25]. . |
7 | NEJLA B. E, MINNA H. Degradation of cellulose derivatives in laboratory, man-made, and natural environments[J]. Biomacromolecules, 2022,23(7):2713-2729. |
8 | 李秀妮,李猛,万德建,等.烟叶微生物及其在烟叶发酵和醇化中的作用研究进展[J].微生物学通报,2019,46(6):1520-1529. |
LI X N, LI M, WAN D J, et al.. Role of microorganisms in tobacco fermentation and alcoholization: a review[J]. Microbiol. China, 2019, 46(6): 1520-1529. | |
9 | 关亮,李天丽,陈竹亭,等.陈化烟叶中纤维素降解菌群的分离及其特性研究[J].中国烟草科学,2013,34(6):103-107. |
GUAN L, LI T L, CHEN Z T, et al.. Isolation and characterization of bacterial community with cellulose-decomposition ability from aging flue-cured tobacco leaves[J]. Chin. Tob. Sci., 2013, 34(6): 103-107. | |
10 | LIU F, WU Z Y, ZHANG X P, et al.. Microbial community and metabolic function analysis of cigar tobacco leaves during fermentation[J]. Microbiol. Open, 2021, 10(2): 1171. |
11 | 孔蒙蒙,卢鹏,陈千思,等. 产纤维素酶工程菌株的构建及其在醇化烟叶中的应用[J]. 生物技术进展, 2024, 14(2): 263-270. |
KONG M M, LU P, CHEN Q S, et al.. Construction of cellulase producing strain and its application in alcoholized tobacco leaves[J]. Curr, Biotechnol., 2024, 14(2): 263-270. | |
12 | ZHANG G H, LU Z, WEI L, et al.. Changes in physicochemical properties and microbial community succession during leaf stacking fermentation[J/OL]. AMB Express, 2023, 13: 1-15[2024-07-20]. . |
13 | ZHANG Q, KONG G H, ZHAO G K, et al.. Microbial and enzymatic changes in cigar tobacco leaves during air-curing and fermentation[J]. Appl. Microbiol. Biotechnol., 2023, 107(18): 1-13. |
14 | 陆晨.高产纤维素酶菌株的筛选及其产酶条件的优化[D].长沙:中南林业科技大学,2012. |
15 | 钟斌,陶文玲,倪思毅,等. 一株纤维素降解菌的筛选、鉴定及产酶条件优化[J]. 江西农业大学学报,2021,43(05):1167-1177. |
ZHONG B, TAO W L, NI S Y, et al.. Screening, identification and optimization of enzyme production conditions of a cellulose degrading bacterium[J]. J. Jiangxi Agric. Univ., 2021, 43(05): 1167-1177. | |
16 | 李鹏,陈秀珍,庄文颖.高产纤维素酶的拟康宁木霉菌株8985固态发酵条件优化[J].菌物学报,2021,40(4):743-758. |
LI P, CHEN X Z, ZHUANG W Y. Optimization of solid state fermentation conditions for the high cellulase producing strain Trichoderma koningiopsis 8985[J]. Mycosystema, 2021, 40(4): 743-758. | |
17 | 李春梅,何江波,陈惠,等. 高产中性纤维素酶的巨大芽孢杆菌基因工程菌发酵工艺条件优化[J]. 农业生物技术学报,2011,19(03):557-564. |
LI C M, HE J B, CHEN H, et al.. Optimization of fermentation process conditions of genetically engineered Bacillus gigantium with high yield of neutral cellulase[J]. Chin. J. Agric. Biotechnol., 2011, 19(03): 557-564. | |
18 | 张远科,徐鸿,曹治,等.产纤维素酶细菌的筛选及其产酶优化[J].纤维素科学与技术,2021,29(3):16-26. |
ZHANG Y K, XU H, CAO Z, et al.. Screening of cellulase-producing bacteria and optimization of enzyme production[J]. J. Cellul. Sci. Technol., 2021, 29(3): 16-26. | |
19 | 王永伦,余克非,郑展望.1株耐高温纤维素降解菌发酵条件优化与秸秆降解应用[J].江苏农业科学,2023,51(19):229-236+244. |
WANG Y L, YU K F, ZHENG Z W. Optimization of fermentation conditions and application of straw degradation of a strain resistant to high temperature cellulose[J]. Jiangsu Agric. Sci., 2019, 51(19): 229-236+244. | |
20 | 周宁,王智伟,曹平华,等.产酸性木聚糖酶链霉菌的鉴定、酶学特性及发酵工艺研究[J].中国饲料,2016(8):16-21+24. |
ZHOU N, WANG Z W, CAO P H, et al.. Identification, enzymatic characteristics and fermentation technology of Streptomyces xylanase producing acid[J/OL]. China Feed, 2016(8): 16-21+24. | |
21 | 姜伯玲.重离子辐照诱变选育纤维素酶高产菌株及其发酵工艺的研究[D].兰州:中国科学院研究生院,2016. |
JIANG B L. Study on selection and fermentation of cellulase high-yielding strains by heavy ion irradiation mutagenesis[D]. Lanzhou:Graduate School of Chinese Academy of Sciences, 2016. | |
22 | 毛丽春,修立辉,胡刚.产纤维素酶细菌菌株的分离鉴定及产酶条件优化[J].中国酿造,2018,37(4):83-87. |
MAO L C, XIU L H, HU G. Isolation and identification of cellulase-producing bacteria and optimization of their enzyme-producing conditions[J]. China Brew., 2018, 37(4): 83-87. | |
23 | BRUNE A. Symbiotic digestion of lignocellulose in termite guts[J]. Nat. Rev. Microbiol., 2014, 12(3): 168-180. |
24 | 毛婷,朱瑞清,牛永艳,等.纤维素降解芽孢菌的筛选及产酶条件优化[J].中国酿造,2020,39(1):71-76. |
MAO T, ZHU R Q, NIU Y Y, et al.. Screening and enzyme production conditions optimization of cellulose-degrading Bacillus [J]. China Brew., 2020, 39(1): 71-76. | |
25 | 韦燕琪,宁思敏,韦昌浩,等. 高产纤维素酶产生菌的筛选、鉴定及发酵条件优化[J/OL]. 中国饲料,2024:1-9[2024-06-20]. . |
WEI Y Q, NING S M, WEI C H, et al.. Screening, identification and optimization of fermentation conditions of cellulase producing bacteria[J/OL]. Chinese Feed, 2024: 1-9[2024-06-20]. . | |
26 | 钟斌,陶文玲,倪思毅,等. 一株纤维素降解菌的筛选、鉴定及产酶条件优化[J]. 江西农业大学学报, 2021, 43(05): 1167-1177. |
ZHONG B, TAO W L, NI S Y, et al.. Screening, identification and optimization of enzyme production conditions of a cellulose-degrading bacterium[J]. J. Jiangxi Agric. Univ., 2021, 43 (05): 1167-1177. |
[1] | 孔蒙蒙, 卢鹏, 陈千思, 乔学义, 陈善义, 金静静, 郑雪坳, 曹培健, 陶界锰. 产纤维素酶工程菌株的构建及其在醇化烟叶中的应用[J]. 生物技术进展, 2024, 14(2): 263-270. |
[2] | 张立华, 王一樊, 张旭阳, 刘千盈, 高思琦, 焦健. 响应面分析法优化酶法提取红景天苷的工艺研究[J]. 生物技术进展, 2023, 13(3): 441-448. |
[3] | 郝捷, 李选文, 张宝, 郑超, 孙志康, 季嫱, 吴娜, 吴晗, 李力群. 纤维素酶在烟草中的应用进展[J]. 生物技术进展, 2023, 13(2): 166-173. |
[4] | 张文静, 佟晔, 杨锡文, 曹彦金, 魏计东. 高产中性蛋白酶菌株的筛选、优化及中试放大[J]. 生物技术进展, 2022, 12(1): 112-119. |
[5] | 张清翠,石雅丽,刘安礼,胡建华,李永丽,孙亚超,何可欣,夏婷,鲍彦彬. 外切纤维素酶的研究与应用进展[J]. 生物技术进展, 2020, 10(5): 495-502. |
[6] | 严海璘,,朱宗财,,张王斌,,杜培秀,张超,赵文军4,李为民. 梨火疫病菌两个Sec依赖的外泌纤维素酶鉴定及在侵染梨幼果过程中的基因表达分析[J]. 生物技术进展, 2020, 10(5): 517-523. |
[7] | 李丽娟,夏文静,马贵平. 碳纳米管固定化纤维素酶的最佳工艺研究[J]. 生物技术进展, 2020, 10(4): 426-431. |
[8] | 陈媛,李金阳,张宇宏,刘波,张志伟,徐欣欣,张伟. 一株特异腐质霉纤维素酶高产突变株的鉴定分析[J]. 生物技术进展, 2019, 9(2): 185-190. |
[9] | 王加友,赵彭年,杨德玉,龙惊惊,周悦,王远. 一株纤维素分解菌的筛选、鉴定及其对玉米秸秆的降解效果[J]. 生物技术进展, 2018, 8(2): 132-139. |
[10] | 刘云海,李钰,孙芳娇,高炳淼. 重组芋螺毒素His-Xa-MrVIB发酵条件优化[J]. 生物技术进展, 2016, 6(5): 352-356. |
[11] | 韩笑,闫培生,史翠娟,杨树燕,李永鹏,邹雪平. 海洋微生物产纤维素酶及其应用研究进展[J]. 生物技术进展, 2015, 5(3): 191-195. |
[12] | 杨煌建,张祝兰,黄小珍,郑卫. 链霉菌FIM-0916产安福霉素的发酵条件优化[J]. 生物技术进展, 2014, 4(2): 118-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部