生物技术进展 ›› 2024, Vol. 14 ›› Issue (6): 973-979.DOI: 10.19586/j.2095-2341.2024.0091
夏琳1(), 徐向丽2, 王雪云2, 杨军1, 武明珠1, 宋卫武2(
)
收稿日期:
2024-04-28
接受日期:
2024-06-20
出版日期:
2024-11-25
发布日期:
2024-12-27
通讯作者:
宋卫武
作者简介:
夏琳 E-mail:x504107743@163.com;
基金资助:
Lin XIA1(), Xiangli XU2, Xueyun WANG2, Jun YANG1, Mingzhu WU1, Weiwu SONG2(
)
Received:
2024-04-28
Accepted:
2024-06-20
Online:
2024-11-25
Published:
2024-12-27
Contact:
Weiwu SONG
摘要:
绿原酸(chlorogenic acid, CGA)是一种广泛存在于植物中的酚酸类化合物,其主要来源于咖啡、茶叶、水果和蔬菜等。绿原酸在植物生长发育、抗病虫害、抗寒等方面具有重要作用。绿原酸经苯丙氨酸代谢途径合成,但是其合成及调控的分子机制目前尚不十分清楚。总结分析了绿原酸生物合成途径关键限速酶及转录因子、影响其含量的生物与非生物因素及应用前景,旨在为今后植物中绿原酸的合成调控提供理论支持及靶标基因。
中图分类号:
夏琳, 徐向丽, 王雪云, 杨军, 武明珠, 宋卫武. 植物绿原酸生物合成研究进展[J]. 生物技术进展, 2024, 14(6): 973-979.
Lin XIA, Xiangli XU, Xueyun WANG, Jun YANG, Mingzhu WU, Weiwu SONG. Research Progress on the Biosynthesis of Chlorogenic Acid in Plant[J]. Current Biotechnology, 2024, 14(6): 973-979.
图1 三种可能的绿原酸生物合成路径图[3]注:PAL—苯丙氨酸解氨酶;UGCT—肉桂酸葡糖基转移酶;HCGQT—奎宁酸羟基化肉桂酰转移酶;C4H—肉桂酸4-羟基化酶;4CL—香豆酰辅酶连接酶;HCT—羟基肉桂酰辅酶A莽草酸/奎尼酸羟基肉桂酰转移酶;HQT—羟基肉桂酰辅酶A奎尼酸羟基肉桂酰转移酶;C3H—对-香豆酸-3′-羟化酶。
Fig. 1 Map of three possible chlorogenic acid biosynthesis pathways[3]
1 | LU H, TIAN Z, CUI Y, et al.. Chlorogenic acid: a comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions[J]. Compr. Rev. Food Sci. Food Saf., 2020, 19(6): 3130-3158. |
2 | NAVEED M, HEJAZI V, ABBAS M, et al.. Chlorogenic acid (CGA): a pharmacological review and call for further research[J]. Biomed. Pharmacother., 2018, 97: 67-74. |
3 | 何柳,陈士林.植物中绿原酸合成途径研究进展[J].药物生物技术,2013,20(5):463-466. |
HE L, CHEN S L. Research progresses on synthesis of chlorogenic acid in plants[J]. Pharm. Biotechnol., 2013, 20(5): 463-466. | |
4 | KONG D X, LI Y Q, BAI M, et al.. Correlation between the dynamic accumulation of the main effective components and their associated regulatory enzyme activities at different growth stages in Lonicera japonica Thunb.[J]. Ind. Crops Prod., 2017, 96: 16-22. |
5 | HE L, XU X, LI Y, et al.. Transcriptome analysis of buds and leaves using 454 pyrosequencing to discover genes associated with the biosynthesis of active ingredients in Lonicera japonica Thunb.[J/OL]. PLoS One, 2013, 8(4): e62922[2024-07-25]. . |
6 | PENG X, LI W, WANG W, et al.. Cloning and characterization of a cDNA coding a hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase involved in chlorogenic acid biosynthesis in Lonicera japonica [J]. Planta Med., 2010, 76(16): 1921-1926. |
7 | HAHLBROCK K, SCHEEL D. Physiology and molecular biology of phenylpropanoid metabolism[J]. Annu. Rev. Plant Biol., 1989, 40(1):347-369. |
8 | 于利,张彦,陈爱国,等.烟草苯丙烷代谢途径关键酶肉桂酸-4-羟化酶、4-香豆酸-辅酶A基因的分离及表达特性分析[J].植物遗传资源学报,2014,15(5):1067-1073. |
YU L, ZHANG Y, CHEN A G, et al.. Isolation and expression analysis of Ntc4h and Nt4cl encoding the key enzymes of phenylalanine metabolism pathway in tobacco[J]. J. Plant Genet. Resour., 2014, 15(5): 1067-1073. | |
9 | 侯爽. 烟草叶片的低温生理响应及外源物质对低温胁迫的缓解效应[D]. 重庆:西南大学, 2020. |
HOU S. Physiological response to low temperature of tobacco leaves and mitigation effect of exogenous substances on low temperature stress[D]. Chongqing: Southwest University, 2020. | |
10 | PAYYAVULA R S, SHAKYA R, SENGODA V G, et al.. Synthesis and regulation of chlorogenic acid in potato: rerouting phenylpropanoid flux in HQT-silenced lines[J]. Plant Biotechnol. J., 2015, 13(4): 551-564. |
11 | YU Y, WANG Y, YU Y, et al.. Overexpression of IbPAL1 promotes chlorogenic acid biosynthesis in sweetpotato[J]. Crop J., 2021, 9(1): 204-215. |
12 | SAXE H J, HORIBE T, BALAN B, et al.. Two UGT84A family glycosyltransferases regulate phenol, flavonoid, and tannin metabolism in Juglans regia (English Walnut)[J/OL]. Front. Plant Sci., 2021, 12: 626483[2024-04-11]. . |
13 | TAO S, WANG D, JIN C, et al. Cinnamate-4-hydroxylase gene is involved in the step of lignin biosynthesis in Chinese white pear[J]. J. Am. Soc. Hortic. Sci., 2015, 140(6):573-579. |
14 | LIAO Y, ZENG L, RAO S, et al.. Induced biosynthesis of chlorogenic acid in sweetpotato leaves confers the resistance against sweetpotato weevil attack[J]. J. Adv. Res., 2020, 24: 513-522. |
15 | XU J, ZHU J, LIN Y, et al.. Comparative transcriptome and weighted correlation network analyses reveal candidate genes involved in chlorogenic acid biosynthesis in sweet potato[J/OL]. Sci. Rep., 2022, 12: 2770[2024-07-25]. . |
16 | NAOYA FUKUDA M E, YOSHIDA H, KUSANO M. Effects of light quality, photoperiod, CO2 concentration, and air temperature on chlorogenic acid and rutin accumulation in young lettuce plants[J]. Plant Physiol. Biochem., 2022, 186: 290-298. |
17 | LU H, ZHAO Y L, JIANG X N. Stable and specific expression of 4-coumarate: coenzyme A ligase gene (4CL1) driven by the xylem-specific Pto4CL1 promoter in the transgenic tobacco[J]. Biotechnol. Lett., 2004, 26(14): 1147-1152. |
18 | LI M, GUO L, WANG Y, et al.. Molecular and biochemical characterization of two 4-coumarate: CoA ligase genes in tea plant (Camellia sinensis)[J]. Plant Mol. Biol., 2022, 109(4): 579-593. |
19 | 乔中全,王晓明,曾慧杰,等.灰毡毛忍冬Lm4CL基因克隆及表达分析[J].中南林业科技大学学报,2021,41(5):122-132. |
QIAO Z Q, WANG X M, ZENG H J, et al.. Clone and expression analysis of Lm4CL in Lonicera macranthoides Hand-Mazz[J]. J. Cent. South Univ. For. Technol., 2021, 41(5): 122-132. | |
20 | HOFFMANN L, MAURY S, MARTZ F, et al.. Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism[J]. J. Biol. Chem., 2003, 278(1): 95-103. |
21 | CARDENAS C L, COSTA M A, LASKAR D D, et al.. RNAi modulation of chlorogenic acid and lignin deposition in Nicotiana tabacum and insufficient compensatory metabolic cross-talk[J]. J. Nat. Prod., 2021, 84(3): 694-706. |
22 | 李洋,李明,岳玮,等.烟草NtHCT基因对次生代谢物质绿原酸和类黄酮合成的影响[J].中国烟草学报,2015,21(6):127-131. |
LI Y, LI M, YUE W, et al.. Effect of NtHCT gene on synthesis of chlorogenic acid and flavonoid in tobacco[J]. Acta Tabacaria Sin., 2015, 21(6): 127-131. | |
23 | CHEN M, XIAO M, LIU B, et al.. Full-length transcriptome sequencing and transgenic tobacco revealed the key genes in the chlorogenic acid synthesis pathway of Sambucus chinensis L.[J/OL]. Physiol. Plant, 2023, 175(3): e13944[2024-07-25]. . |
24 | 杨银菊.打顶诱导烟叶绿原酸生物合成积累的生理机制[D].北京:中国农业科学院,2018. |
25 | 蒋向辉,佘朝文,苑静,等.微量元素对金银花绿原酸合成关键酶基因LjHCT和LjC3H1表达的影响研究[J].植物科学学报,2017,35(2):260-266. |
JIANG X H, SHE C W, YUAN J, et al.. Effects of trace elements on the expression of LjHCT and LjC3H1 for chlorogenic acid synthesis in Lonicera japonica Thunb.[J]. Plant Sci. J., 2017, 35(2): 260-266. | |
26 | KUNDU A, VADASSERY J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores[J]. Plant Biol. Stuttgart Ger., 2019, 21(2): 185-189. |
27 | KIM Y B, THWE A A, KIM Y J, et al.. Characterization of genes for a putative hydroxycinnamoyl-coenzyme A quinate transferase and p-coumarate 3'-hydroxylase and chlorogenic acid accumulation in Tartary buckwheat[J]. J. Agric. Food Chem., 2013, 61(17): 4120-4126. |
28 | PU G, WANG P, ZHOU B, et al.. Cloning and characterization of Lonicera japonica p-Coumaroyl ester 3-Hydroxylase which is involved in the biosynthesis of chlorogenic acid[J]. Biosci. Biotechnol. Biochem., 2013, 77(7): 1403-1409. |
29 | KNOLLENBERG B J, LIU J, YU S, et al.. Cloning and functional characterization of a p-coumaroyl quinate/shikimate 3'-hydroxylase from potato (Solanum tuberosum)[J]. Biochem. Biophys. Res. Commun., 2018, 496(2): 462-467. |
30 | 张静茹,吴敏琳,李卫东,等.金银花HQT基因在真核植物细胞中对绿原酸生物合成的调控[J].中草药,2016,47(20):3683-3687. |
ZHANG J R, WU M L, LI W D, et al.. Regulation of honeysuckle HQT gene to chlorogenic acid biosynthesis in eukaryotic plant cells of Lonicerae flos [J]. Chin. Tradit. Herb. Drugs, 2016, 47(20): 3683-3687. | |
31 | ZHANG J, WU M, LI W, et al.. Regulation of chlorogenic acid biosynthesis by hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase in Lonicera japonica [J]. Plant Physiol. Biochem., 2017, 121: 74-79. |
32 | SONNANTE G, D'AMORE R, BLANCO E, et al.. Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid[J]. Plant Physiol., 2010, 153(3): 1224-1238. |
33 | 武明珠,许亚龙,李锋,等.烟草绿原酸合成关键基因NtHQT1的克隆及表达分析[J].烟草科技,2015,48(11):1-6. |
WU M Z, XU Y L, LI F, et al.. Cloning and expression analysis of chlorogenic acid biosynthetic gene NtHQT1 from Nicotiana tabacum [J]. Tob. Sci. Technol., 2015, 48(11): 1-6. | |
34 | LEPELLEY M, CHEMINADE G, TREMILLON N, et al.. Chlorogenic acid synthesis in coffee: an analysis of CGA content and real-time RT-PCR expression of HCT HQT C3H1, and CCoAOMT1 genes during grain development in Canephora [J]. Plant Sci., 2007, 172(5): 978-996. |
35 | WANG Z, WANG S, LIU P, et al.. Molecular cloning and functional characterization of NtWRKY41a in the biosynthesis of phenylpropanoids in Nicotiana tabacum [J/OL]. Plant Sci., 2022, 315: 111154[2024-07-25]. . |
36 | WANG Z, MA L, LIU P, et al.. Transcription factor NtWRKY33a modulates the biosynthesis of polyphenols by targeting NtMYB4 and NtHCT genes in tobacco[J/OL]. Plant Sci., 2023, 326: 111522[2024-07-25]. . |
37 | 王中,赵利杰,刘萍萍, 等. 烟草NtMYB59基因克隆及过表达对绿原酸含量的影响[J]. 烟草科技, 2021, 54(5): 1-7. |
WANG Z, ZHAO L J, LIU P P, et al.. Cloning and over-expressing tobacco NtMYB59 gene and the effects on chlorogenic acid content[J]. Tobacco Technol., 2021, 54(5): 1-7. | |
38 | ZHAO J, HAN J, ZHANG J, et al.. NtPHYB1 K326, a homologous gene of Arabidopsis PHYB positively regulates the content of phenolic compounds in tobacco[J]. Plant Physiol. Biochem., 2016, 109: 45-53. |
39 | WANG Z, YANG J, GAO Q, et al.. The transcription factor NtERF13a enhances abiotic stress tolerance and phenylpropanoid compounds biosynthesis in tobacco[J/OL]. Plant Sci., 2023, 334: 111772[2024-07-25]. . |
40 | TANG N, CAO Z, YANG C, et al.. A R 2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides[J/OL]. Plant Sci., 2021, 308: 110924[2024-07-25]. . |
41 | LI M, LI Y, GUO L, et al.. Functional characterization of tea (Camellia sinensis) MYB4a transcription factor using an integrative approach[J/OL]. J. Cardiothorac. Surg., 2017, 8: 943[2024-07-25]. . |
42 | ZHA L, LIU S, LIU J, et al.. DNA methylation influences chlorogenic acid biosynthesis in Lonicera japonica by mediating LjbZIP8 to regulate phenylalanine ammonia-Lyase 2 expression[J/OL]. Front. Plant Sci., 2017, 8: 1178[2024-07-25]. . |
43 | SHADLE G L, WESLEY S V, KORTH K L, et al.. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of l-phenylalanine ammonia-lyase[J]. Phytochemistry, 2003, 64(1): 153-161. |
44 | BEGUM N, AKHTAR K, AHANGER M A, et al.. Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions[J]. Environ. Sci. Pollut. Res., 2021, 28(33): 45276-45295. |
45 | ASEEL D G, RASHAD Y M, HAMMAD S M. Arbuscular mycorrhizal fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathways genes in tomato against tomato mosaic virus[J/OL]. Sci. Rep., 2019, 9: 9692[2024-07-25]. . |
46 | KRANTHI S, KRANTHI K R, WANJARI R R. Influence of semilooper damage on cotton host-plant resistance to Helicoverpa armigera (Hub)[J]. Plant Sci., 2003, 164(2): 157-163. |
47 | FANG H, QI X, LI Y, et al.. De novo transcriptomic analysis of light-induced flavonoid pathway, transcription factors in the flower buds of Lonicera japonica [J]. Trees, 2020, 34(1): 267-283. |
48 | OHARA T, SATAKE A. Photosynthetic entrainment of the circadian clock facilitates plant growth under environmental fluctuations: perspectives from an integrated model of phase oscillator and phloem transportation[J/OL]. Front. Plant Sci., 2017, 8: 1859[2024-07-25]. . |
49 | 左天觉. 烟草的生产、生理、生物化学[M]. 上海:上海远东出版社, 1993. |
50 | LI C X, XU Z G, DONG R Q, et al.. An rna-Seq analysis of grape plantlets grown in vitro reveals different responses to blue, green, red led light, and white fluorescent light[J/OL]. Front. Plant Sci., 2017, 8: 78[2024-07-25]. . |
51 | RÁCZ A, CZÉGÉNY G, CSEPREGI K, et al.. Ultraviolet-B acclimation is supported by functionally heterogeneous phenolic peroxidases[J/OL]. Sci. Rep., 2020, 10: 16303[2024-07-25]. . |
52 | CHEN X, CAI W, XIA J, et al.. Metabolomic and transcriptomic analyses reveal that blue light promotes chlorogenic acid synthesis in strawberry[J]. J. Agric. Food Chem., 2020, 68(44): 12485-12492. |
53 | TSABALLA A, SARROU E, XANTHOPOULOU A, et al.. Comprehensive approaches reveal key transcripts and metabolites highlighting metabolic diversity among three oriental tobacco varieties[J/OL]. Ind. Crops Prod., 2020, 143: 111933[2024-07-25]. . |
54 | 万诚,刘仁祥,聂琼,等.不同烟草品种绿原酸含量变化研究[J].山地农业生物学报,2016,35(2):25-28, 33. |
WAN C, LIU R X, NIE Q, et al.. Dynamic changes of chlorogenic acid content in different types of tobacco cultivars[J]. J. Mt. Agric. Biol., 2016, 35(2): 25-28, 33. | |
55 | 吴龙奇,朱文学,张玉先, 等. 杜仲中绿原酸含量及提取检测方法分析[J]. 食品科学, 2005, 26(S1):187-192. |
WU L Q, ZHU W X, ZHANG Y X, et al.. Analysis of chlorogenic acid content and extraction detection method in Eucommia ulmoides oliv [J]. Food Sci., 2005, 26(S1): 187-192. | |
56 | 尹建雄,卢红.烟草中多酚化合物及多酚氧化酶研究进展[J].广西农业科学,2005,36(3):284-286. |
YIN J X, LU H. Advancement of study on polyphenols and polyphenoloxidase in tobacco[J]. J. South. Agric., 2005, 36(3): 284-286. | |
57 | 闫克玉.烟草化学[M].郑州:郑州大学出版社,2002. |
58 | 张翔,毛家伟,宝德俊,等.烟叶下脚料有机肥和有机无机复混肥应用效果研究[J].河南农业科学,2008(8):84-86. |
ZHANG X, MAO J W, BAO D J, et al.. Effects of organic fertilizer and mixed organic-chemical fertilizer made by Offal of tobacco processing[J]. J. Henan Agric. Sci., 2008(8): 84-86. | |
59 | 勾华,刘建程.废弃烟叶的综合利用[J].江苏农业科学,2014,42(2):220-223. |
GOU H, LIU J C. Comprehensive utilization of discarded tobacco leaves[J]. Jiangsu Agric. Sci., 2014, 42(2): 220-223. | |
60 | 张文姬,陈桢禄,邹明民,等.烟草资源多元化开发利用潜能[J].广东农业科学,2021,48(12):100-110. |
ZHANG W J, CHEN Z L, ZOU M M, et al.. Diversified development and utilization of tobacco resources[J]. Guangdong Agric. Sci., 2021, 48(12): 100-110. | |
61 | 王跃驹,李刚强,刘德虎. 利用转基因植物生产新型疫苗[J]. 高技术通讯, 1997(12):57-60+46. |
WANG Y J, LI G Q, LIU D H. Using genetically modified plants to produce new vaccines[J]. High Tech Commun., 1997(12): 57-60+46. | |
62 | 凌华,黄惠琴,鲍时翔.植物生物反应器研究进展[J].中国生物工程杂志,2002,22(5):21-26. |
LING H, HUANG H Q, BAO S X. Progress in transgenic plant as bioreactor[J]. China Biotechnol., 2002, 22(5): 21-26. |
[1] | 汪苏洁, 顾梦丽, 陶界锰, 童治军, 郭俊佳, 金静静, 徐梦晓, 孟利军, 张剑锋, 曹培健, 卢鹏. 烟草疫霉拮抗菌XC-29的分离鉴定及其全基因组序列分析[J]. 生物技术进展, 2024, 14(6): 1004-1015. |
[2] | 潘少婷, 王博轩, 陈佳鑫, 蔡佳君, 林彦伸, 唐灵芝, 洪璇. 海洋真菌来源的聚酮类化合物研究进展[J]. 生物技术进展, 2024, 14(6): 993-1003. |
[3] | 王博文, 王金星, 邱成尧, 秦庆宪, 王菊香, 姚博, 李红艳, 谭官鑫, 杨应伟, 姬广海. 贝莱斯芽孢杆菌联合含钙土壤调理剂对烟草青枯病的防治[J]. 生物技术进展, 2024, 14(5): 839-847. |
[4] | 郝捷, 季嫱, 李力群, 郑超, 吴娜, 吴晗, 李选文, 孙志康. 生物酶和微生物技术改善烟叶香气的研究进展[J]. 生物技术进展, 2022, 12(6): 817-824. |
[5] | 王金棒, 邱纪青, 汪志波, 李凌, 卢志菁, 邹珺, 陈彦. 烟草废弃物在堆肥领域的研究进展[J]. 生物技术进展, 2022, 12(5): 711-720. |
[6] | 肖克, 周晓今, 陈茹梅, 逄森. 玉米中ClassⅠ和ClassⅡ NAS蛋白之间的BiFC互作研究[J]. 生物技术进展, 2022, 12(5): 728-736. |
[7] | 樊锦瑞, 王磊, 邹俊杰. PRNs基因家族研究进展[J]. 生物技术进展, 2022, 12(3): 325-331. |
[8] | 王欣, 张天柱. 园艺作物花青素合成调控研究进展[J]. 生物技术进展, 2022, 12(1): 10-16. |
[9] | 王培,王凤涛,常洪雷,冯晶,郭青云,蔺瑞明. 小麦NTL转录因子的全基因组鉴定及其在小麦与条锈菌互作过程中的表达变化分析[J]. 生物技术进展, 2019, 9(2): 114-121. |
[10] | 马嘉伟,王宇婷,严振宁,付雪晴,赵静雅. 青蒿MYB类转录因子AaBPF1的克隆及功能研究[J]. 生物技术进展, 2019, 9(1): 35-45. |
[11] | 吴尽,肖慧,赵敏蝶,丁新,郑冬,刘学东. SOX9基因在癌症发生发展中作用机制研究进展[J]. 生物技术进展, 2018, 8(5): 397-401. |
[12] | 李丽,刘双清,杨远航,戴良英,李魏. 热激转录因子在植物抗非生物胁迫中的功能研究进展[J]. 生物技术进展, 2018, 8(3): 214-220. |
[13] | 顾韩雪,刘玥,陈子奇,刘艳芝,刘相国,郝东云,. 过表达玉米Zmsh1基因提高转基因烟草的生物量[J]. 生物技术进展, 2017, 7(3): 203-210. |
[14] | 黄丽娜,刘欢,张奋强,姜梦嫣,于跃,周义杰,周王艳,薛飞燕 ,马兰青,. 红景天苷生物合成机制及其基因工程研究进展[J]. 生物技术进展, 2017, 7(2): 106-110. |
[15] | 史庆玲,董永彬,周强,马智艳,乔大河,邓飞,李玉玲. 玉米转录因子ZmERF1的克隆及表达分析[J]. 生物技术进展, 2017, 7(1): 38-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部