1 |
ENGELS J W, UHLMANN E. Gene synthesis[J]. Angew. Chem. Int. Ed. Engl., 1989, 28(6):716-734.
|
2 |
CARUTHERS M H. Gene synthesis machines: DNA chemistry and its uses[J]. Science, 1985, 230(4723): 281-285.
|
3 |
TIAN J, MA K, SAAEM I. Advancing high-throughput gene synthesis technology[J]. Mol. Biosyst., 2009, 5(7): 714-722.
|
4 |
HUGHES R A, MIKLOS A E, ELLINGTON A D. Gene synthesis: methods and applications[J]. Methods Enzymol., 2011, 498: 277-309.
|
5 |
XIONG A S, PENG R H, ZHUANG J, et al.. Chemical gene synthesis: strategies, softwares, error corrections, and applications[J]. FEMS Microbiol. Rev., 2008, 32(3): 522-540.
|
6 |
MA S, TANG N, TIAN J. DNA synthesis, assembly and applications in synthetic biology[J]. Curr. Opin. Chem. Biol., 2012, 16(3-4): 260-267.
|
7 |
HOGREFE R I, MIDTHUNE B, LEBEDEV A. Current challenges in nucleic acid synthesis[J]. Isr. J. Chem., 2013, 53(6-7): 326-349.
|
8 |
JABLONKA E, LAMB M J. Soft inheritance: challenging the modern synthesis[J]. Genet. Mol. Biol., 2008, 31(2): 389-395.
|
9 |
HESS J F, KOHL T A, KOTROVÁ M, et al.. Library preparation for next generation sequencing: a review of automation strategies[J/OL]. Biotechnol. Adv., 2020, 41: 107537[2024-06-19]. .
|
10 |
MARDIS E R. Next-generation sequencing platforms[J]. Annu. Rev. Anal. Chem., 2013, 6: 287-303.
|
11 |
GOSWAMI S, SHARMA S. International Conference on Edge Computing and Applications, 2022[C]// IEEE, 2022.
|
12 |
JENA M K, PATHAK B. Development of an artificially intelligent nanopore for high-throughput DNA sequencing with a machine-learning-aided quantum-tunneling approach[J]. Nano Lett., 2023, 23(7): 2511-2521.
|
13 |
YOHE S, THYAGARAJAN B. Review of clinical next-generation sequencing[J]. Arch. Pathol. Lab. Med., 2017, 141(11): 1544-1557.
|
14 |
HU T, CHITNIS N, MONOS D, et al.. Next-generation sequencing technologies: an overview[J]. Hum. Immunol., 2021, 82(11): 801-811.
|
15 |
BUERMANS H P J, DEN DUNNEN J T. Next generation sequencing technology: advances and applications[J]. Biochim. Biophys. Acta, 2014, 1842(10): 1932-1941.
|
16 |
HENNIG B P, VELTEN L, RACKE I, et al.. Large-scale low-cost NGS library preparation using a robust TN5 purification and tagmentation protocol[J]. G3, 2018, 8(1): 79-89.
|
17 |
GLOECKNER C, KIA A, BOMATI E, et al. Modified transposases for improved insertion sequence bias and increased DNA input tolerance: US 10035992B2[P]. 2017-11-17.
|
18 |
REZNIKOFF W S. Transposon TN5[J]. Annu. Rev. Genet., 2008, 42: 269-286.
|
19 |
PICELLI S, BJÖRKLUND A K, REINIUS B, et al.. TN5 transposase and tagmentation procedures for massively scaled sequencing projects[J]. Genome Res., 2014, 24(12): 2033-2040.
|
20 |
STEINIGER-WHITE M, RAYMENT I, REZNIKOFF W S. Structure/function insights into TN5 transposition[J]. Curr. Opin. Struct. Biol., 2004, 14(1): 50-57.
|
21 |
KIA A, GLOECKNER C, OSOTHPRAROP T, et al.. Improved genome sequencing using an engineered transposase[J/OL]. BMC Biotechnol., 2017, 17(1): 6[2024-06-19]. .
|
22 |
WANG Y, XUAN G, NING H, et al.. TN5 transposon-based mutagenesis for engineering phage-resistant strains of Escherichia coli BL21 (DE3)[J]. J. Microbiol., 2023, 61(5): 559-569.
|
23 |
MELLO C, FIRE A. DNA transformation[J]. Methods Cell Biol., 1995, 48: 451-482.
|
24 |
DUBNAU D. DNA uptake in bacteria[J]. Annu. Rev. Microbiol., 1999, 53: 217-244.
|
25 |
WILHARM G, LEPKA D, FABER F, et al.. A simple and rapid method of bacterial transformation[J]. J. Microbiol. Methods, 2010, 80(2): 215-216.
|
26 |
RÜFER A. Therapeutic protein analysis with the agilent 2100 bioanalyzer[J]. BioTechniques, 2010, 49(3): 669-671.
|
27 |
FISCHER B, SIEDLER F. Using the agilent 2100 bioanalyzer for quality control of protein samples prior to MS-analysis[J]. Agilent Technol., 2004.
|
28 |
MEYERS J A, SANCHEZ D, ELWELL L P, et al.. Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid[J]. J. Bacteriol., 1976, 127(3): 1529-1537.
|
29 |
SCHMIDT T, FRIEHS K, SCHLEEF M, et al.. Quantitative analysis of plasmid forms by agarose and capillary gel electrophoresis[J]. Anal. Biochem., 1999, 274(2): 235-240.
|
30 |
LEE C, KIM J, SHIN S G, et al.. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli [J]. J. Biotechnol., 2006, 123(3): 273-280.
|
31 |
LEE C L, OW D S W, OH S K W. Quantitative real-time polymerase chain reaction for determination of plasmid copy number in bacteria[J]. J. Microbiol. Methods, 2006, 65(2): 258-267.
|
32 |
PROVIDENTI M A, O'BRIEN J M, EWING R J, et al.. The copy-number of plasmids and other genetic elements can be determined by SYBR-Green-based quantitative real-time PCR[J]. J. Microbiol. Methods, 2006, 65(3): 476-487.
|
33 |
SMALLA K, JECHALKE S, TOP E M. Plasmid detection, characterization, and ecology[J]. Microbiol. Spectr., 2015, 3(1): 1110-1128.
|
34 |
DING L, WILLIAMS K, AUSSERER W, et al.. Analysis of plasmid samples on a microchip[J]. Anal. Biochem., 2003, 316(1): 92-102.
|
35 |
HACKETT P B, LARGAESPADA D A, COOPER L J N. A transposon and transposase system for human application[J]. Mol. Ther., 2010, 18(4): 674-683.
|
36 |
CAIN A K, BARQUIST L, GOODMAN A L, et al.. A decade of advances in transposon-insertion sequencing[J]. Nat. Rev. Genet., 2020, 21(9): 526-540.
|
37 |
BIRE S, CASTERET S, ARNAOTY A, et al.. Transposase concentration controls transposition activity: myth or reality?[J]. Gene, 2013, 530(2): 165-171.
|