生物技术进展 ›› 2024, Vol. 14 ›› Issue (1): 1-16.DOI: 10.19586/j.2095-2341.2023.0139
• 生物制品研发与技术专题 •
收稿日期:
2023-10-26
接受日期:
2023-11-28
出版日期:
2024-01-25
发布日期:
2024-02-05
通讯作者:
孙召朋
作者简介:
常东峰 E-mail: changdongfeng@cspc.cn;
基金资助:
Dongfeng CHANG(), Zhaopeng SUN()
Received:
2023-10-26
Accepted:
2023-11-28
Online:
2024-01-25
Published:
2024-02-05
Contact:
Zhaopeng SUN
摘要:
mRNA凭借其有效性、安全性和易大规模生产等特点,在预防急性传染病方面显示出巨大的潜力。mRNA代表了一个新兴的精准医学领域,几种针对传染病和癌症等疗法的mRNA在体内和体外都显示出良好效果。mRNA稳定性好、免疫原性高、不受受体主要组织相容性复合体(major histocompatibility complex, MHC)型别的限制,且mRNA理论上可实现不同目的蛋白的体内表达,这使得开发mRNA药物更具灵活性,可用于预防和治疗多种难治性或遗传性疾病。介绍了mRNA的一级结构和高级结构,综述了mRNA药物的临床应用进展,以期帮助理解mRNA的药物功能和临床应用,为mRNA药物的发展提供方向。
中图分类号:
常东峰, 孙召朋. mRNA药物的结构和临床应用[J]. 生物技术进展, 2024, 14(1): 1-16.
Dongfeng CHANG, Zhaopeng SUN. Structure and Clinical Application of mRNA Drugs[J]. Current Biotechnology, 2024, 14(1): 1-16.
1 | SAHIN U, KARIKÓ K, TÜRECI Ö. mRNA-based therapeutics-developing a new class of drugs[J]. Nat. Rev. Drug Discov., 2014, 13: 759-780. |
2 | PARDI N, HOGAN M J, PORTER F W, et al.. mRNA vaccines-a new era in vaccinology[J]. Nat. Rev. Drug Discov., 2018, 17: 261-279. |
3 | VAN LINT S, RENMANS D, BROOS K, et al.. The ReNAissanCe of mRNA-based cancer therapy[J]. Expert Rev. Vaccines, 2015, 14(2): 235-251. |
4 | PARDI N, MURAMATSU H, WEISSMAN D, et al.. In vitro transcription of long RNA containing modified nucleosides[J]. Meth. Mol. Biol., 2013, 969: 29-42. |
5 | VOGEL A B, KANEVSKY I, CHE Y E, et al.. A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates[J/OL]. BioRxiv. Preprint Server., 2020: 280818v1[2023-10-20]. . |
6 | JACKSON N A C, KESTER K E, CASIMIRO D, et al.. The promise of mRNA vaccines: a biotech and industrial perspective[J/OL]. NPJ Vaccines, 2020, 5: 11[2023-10-20]. . |
7 | WOLFF J A, MALONE R W, WILLIAMS P, et al.. Direct gene transfer into mouse muscle in vivo [J]. Science, 1990, 247(1): 1465-1468. |
8 | DEAL C E, CARFI A, PLANTE O J. Advancements in mRNA encoded antibodies for passive immunotherapy[J/OL]. Vaccines Basel, 2021, 9(2): 108[2023-10-20]. . |
9 | SHYH P T. Review of COVID-19 mRNA Vaccines: BNT162b2 and mRNA-1273[J]. J. Pharm. Pract., 2022, 35(6): 947-951. |
10 | KIM S C, SEKHON S S, SHIN W R, et al.. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency[J]. Mol. Cell. Toxicol., 2022, 18(1): 1-8. |
11 | CONRY R M, LOBUGLIO A F, WRIGHT M, et al.. Characterization of a messenger RNA polynucleotide vaccine vector[J]. Cancer Res., 1995, 55(7): 1397-1400. |
12 | WHITELAW E, COATES A, PROUDFOOT N J. Globin gene transcripts can utilize histone gene 3' end processing signals[J]. Nucleic Acids Res., 1986, 14(17): 7059-7070. |
13 | ZHONG C, WEI P, ZHANG Y P. Enhancing functional expression of codon-optimized heterologous enzymes in Escherichia coli BL21(DE3) by selective introduction of synonymous rare codons[J]. Biotechnol. Bioeng., 2017, 114(5): 1054-1064. |
14 | WANG Y, ZHANG Z, LUO J, et al.. mRNA vaccine: a potential therapeutic strategy[J/OL]. Mol. Cancer, 2021, 20(1): 33[2023-10-20]. . |
15 | RAMANATHAN A, ROBB G B, CHAN S H. mRNA capping: biological functions and applications[J]. Nucleic Acids Res., 2016, 44(16): 7511-7526. |
16 | VAN DIJK E, COUGOT N, MEYER S, et al.. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures[J]. EMBO J., 2002, 21(24): 6915-6924. |
17 | BRENGUES M, TEIXEIRA D, PARKER R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies[J]. Science, 2005, 310(5747): 486-489. |
18 | LEPPEK K, DAS R, BARNA M. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them[J]. Nat. Rev. Mol. Cell Biol., 2018, 19: 158-174. |
19 | WADHWA A, ALJABBARI A, LOKRAS A, et al.. Opportunities and challenges in the delivery of mRNA-based vaccines[J/OL]. Pharmaceutics, 2020, 12(2): E102[2023-10-20]. . |
20 | TREPOTEC Z, ANEJA M K, GEIGER J, et al.. Maximizing the translational yield of mRNA therapeutics by minimizing 5'-UTRs[J]. Tissue Eng. Part A, 2019, 25(1-2): 69-79. |
21 | ZARGHAMPOOR F, AZARPIRA N, KHATAMI S R, et al.. Improved translation efficiency of therapeutic mRNA[J]. Gene, 2019, 707: 231-238. |
22 | CHAUDHARY N, WEISSMAN D, WHITEHEAD K A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation[J]. Nat. Rev. Drug Discov., 2021, 20: 817-838. |
23 | KUDLA G, LIPINSKI L, CAFFIN F, et al.. High guanine and cytosine content increases mRNA levels in mammalian cells[J/OL].PLoS Biol., 4(6): e180[2023-10-20]. . |
24 | HANSON G, COLLER J. Codon optimality, bias and usage in translation and mRNA decay[J]. Nat. Rev. Mol. Cell Biol., 2018, 19: 20-30. |
25 | PRESNYAK V, ALHUSAINI N, CHEN Y H, et al.. Codon optimality is a major determinant of mRNA stability[J]. Cell, 2015, 160(6): 1111-1124. |
26 | CANNAROZZI G, SCHRAUDOLPH N N, FATY M, et al.. A role for codon order in translation dynamics[J]. Cell, 2010, 141(2): 355-367. |
27 | BOSSI L, ROTH J R. The influence of codon context on genetic code translation[J]. Nature, 1980, 286: 123-127. |
28 | KOZAK M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes[J]. Cell, 1986, 44(2): 283-292. |
29 | LIU Q. Comparative analysis of base biases around the stop codons in six eukaryotes[J]. Biosystems, 2005, 81(3): 281-289. |
30 | KARIKÓ K, MURAMATSU H, KELLER J M, et al.. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin[J]. Mol. Ther., 2012, 20(5): 948-953. |
31 | KIMCHI-SARFATY C, OH J M, KIM I W, et al.. A "silent" polymorphism in the MDR1 gene changes substrate specificity[J]. Science, 2007, 315(5811): 525-528. |
32 | MAUGER D M, CABRAL B J, PRESNYAK V, et al.. mRNA structure regulates protein expression through changes in functional half-life[J]. Proc. Natl. Acad. Sci. USA, 2019, 116(48): 24075-24083. |
33 | WAYMENT-STEELE H K, KIM D S, CHOE C A, et al.. Theoretical basis for stabilizing messenger RNA through secondary structure design[J]. Nucleic Acids Res., 2021, 49(18): 10604-10617. |
34 | WENG Y, LI C, YANG T, et al.. The challenge and prospect of mRNA therapeutics landscape[J/OL]. Biotechnol. Adv., 2020, 40: 107534[2023-10-20]. . |
35 | LIN H H, HUANG L F, SU H C, et al.. Effects of the multiple polyadenylation signal AAUAAA on mRNA 3'-end formation and gene expression[J]. Planta, 2009, 230(4): 699-712. |
36 | SHULMAN E D, ELKON R. Systematic identification of functional SNPs interrupting 3'UTR polyadenylation signals[J/OL]. PLoS Genet., 2020, 16(8): e1008977[2023-10-20]. . |
37 | ORLANDINI VON NIESSEN A G, POLEGANOV M A, RECHNER C, et al.. Improving mRNA-based therapeutic gene delivery by expression-augmenting 3' UTRs identified by cellular library screening[J]. Mol. Ther., 2019, 27(4): 824-836. |
38 | HOLTKAMP S, KREITER S, SELMI A, et al.. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells[J]. Blood, 2006, 108(13): 4009-4017. |
39 | CHEN C Y, SHYU A B. AU-rich elements: characterization and importance in mRNA degradation[J]. Trends Biochem. Sci., 1995, 20(11): 465-470. |
40 | NICHOLSON A L, PASQUINELLI A E. Tales of detailed poly(A) tails[J]. Trends Cell Biol., 2019, 29(3): 191-200. |
41 | JALKANEN A L, COLEMAN S J, WILUSZ J. Determinants and implications of mRNA poly(A) tail size: does this protein make my tail look big?[J]. Semin. Cell Dev. Biol., 2014, 34: 24-32. |
42 | PELLETIER J, SONENBERG N. The organizing principles of eukaryotic ribosome recruitment[J]. Annu. Rev. Biochem., 2019, 88: 307-335. |
43 | SCHLAKE T, THESS A, FOTIN-MLECZEK M, et al.. Developing mRNA-vaccine technologies[J]. RNA Biol., 2012, 9(11): 1319-1330. |
44 | MOCKEY M, GONÇALVES C, DUPUY F P, et al.. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level[J]. Biochem. Biophys. Res. Commun., 2006, 340(4): 1062-1068. |
45 | GRIER A E, BURLEIGH S, SAHNI J, et al.. pEVL: a linear plasmid for generating mRNA IVT templates with extended encoded poly(A) sequences[J/OL]. Mol. Ther. Nucleic Acids, 2016, 5: e306[2023-10-20]. . |
46 | POTAPOV V, FU X, DAI N, et al.. Base modifications affecting RNA polymerase and reverse transcriptase fidelity[J]. Nucleic Acids Res., 2018, 46(11): 5753-5763. |
47 | JIANG T, YU N, KIM J, et al.. Oligonucleotide sequence mapping of large therapeutic mRNAs via parallel ribonuclease digestions and LC-MS/MS[J]. Anal. Chem., 2019, 91(13): 8500-8506. |
48 | BEVERLY M, HAGEN C, SLACK O. Poly A tail length analysis of in vitro transcribed mRNA by LC-MS[J]. Anal. Bioanal. Chem., 2018, 410(6): 1667-1677. |
49 | CHALLENER C. Analysis of mRNA therapeutics and vaccines[J]. BioPharm. International., 2022, 35 (2):10-15. |
50 | RICH A. The double helix: a tale of two puckers[J]. Nat. Struct. Mol. Biol., 2003, 10: 247-249. |
51 | HENDRIX D K, BRENNER S E, HOLBROOK S R. RNA structural motifs: building blocks of a modular biomolecule[J]. Q. Rev. Biophys., 2005, 38(3): 221-243. |
52 | BUTCHER S E, PYLE A M. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks[J]. Acc. Chem. Res., 2011, 44(12): 1302-1311. |
53 | D'ASCENZO L, LEONARSKI F, VICENS Q, et al.. Revisiting GNRA and UNCG folds: U-turns versus Z-turns in RNA hairpin loops[J]. RNA, 2017, 23(3): 259-269. |
54 | SCHROEDER K T, MCPHEE S A, OUELLET J, et al.. A structural database for k-turn motifs in RNA[J]. RNA, 2010, 16(8): 1463-1468. |
55 | EGLI M, MINASOV G, SU L, et al.. Metal ions and flexibility in a viral RNA pseudoknot at atomic resolution[J]. Proc. Natl. Acad. Sci. USA, 2002, 99(7): 4302-4307. |
56 | BATEY R T, RAMBO R P, DOUDNA J A. Tertiary motifs in RNA structure and folding[J]. Angew. Chem. Int. Ed. Engl., 1999, 38(16): 2326-2343. |
57 | YU C, GABRIELE V. RNA Structure[M]. Willey Online Library,2020. |
58 | TAMURA M, HOLBROOK S R. Sequence and structural conservation in RNA ribose zippers[J]. J. Mol. Biol., 2002, 320(3): 455-474. |
59 | SHI X, KHADE P K, SANBONMATSU K Y, et al.. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis[J]. J. Mol. Biol., 2012, 419(3-4): 125-138. |
60 | HUANG L, LIAO X, LI M, et al.. Structure and folding of four putative kink turns identified in structured RNA species in a test of structural prediction rules[J]. Nucleic Acids Res., 2021, 49(10): 5916-5924. |
61 | LI B, CAO Y, WESTHOF E, et al.. Advances in RNA 3D structure modeling using experimental data[J/OL]. Genetics, 2020, 11: 574485[2023-10-20]. . |
62 | SEETIN M G, MATHEWS D H. RNA structure prediction: an overview of methods[J]. Meth. Mol. Biol., 2012, 905: 99-122. |
63 | MAUGERI M, NAWAZ M, PAPADIMITRIOU A, et al.. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells[J/OL]. Nat. Commun., 2019, 10: 4333[2023-10-20]. . |
64 | WANG Y S, KUMARI M, CHEN G H, et al.. mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications[J/OL]. J. Biomed. Sci., 2023, 30(1): 84[2023-10-20]. . |
65 | WHITAKER J A, SAHLY H M E, HEALY C M. mRNA vaccines against respiratory viruses[J]. Curr. Opin. Infect. Dis., 2023, 36(5): 385-393. |
66 | HOU F, ZHANG Y, LIU X, et al.. mRNA vaccines encoding fusion proteins of monkeypox virus antigens protect mice from vaccinia virus challenge[J/OL]. Nat. Commun., 2023, 14: 5925[2023-10-20]. . |
67 | NAVEED M, WASEEM M, AZIZ T, et al.. Identification of bacterial strains and development of anmRNA-based vaccine to combat antibiotic resistance in Staphylococcus aureus via in vitro and in silico approaches[J/OL]. Biomedicines, 2023, 11(4): 1039[2023-10-20]. . |
68 | WANG X, LIU C, RCHEULISHVILI N, et al.. Strong immune responses and protection of PcrV and OprF-I mRNA vaccine candidates against Pseudomonas aeruginosa [J/OL]. NPJ Vaccines, 2023, 8: 76[2023-10-20]. . |
69 | HE Q, GAO H, TAN D, et al.. mRNA cancer vaccines: advances, trends and challenges[J]. Acta Pharm. Sin. B, 2022, 12(7): 2969-2989. |
70 | YOU H, JONES M K, GORDON C A, et al.. The mRNA vaccine technology era and the future control of parasitic infections[J/OL]. Clin. Microbiol. Rev., 2023, 36(1): e0024121[2023-10-20]. . |
71 | BORKENS Y. Malaria & mRNA vaccines: a possible salvation from one of the most relevant infectious diseases of the global south[J]. Acta Parasitol., 2023, 68(4): 916-928. |
72 | LE T, SUN C, CHANG J, et al.. mRNA vaccine development for emerging animal and zoonotic diseases[J/OL]. Viruses, 2022, 14(2): 401[2023-10-20]. . |
73 | HERRERA-ONG L R. Strategic construction of mRNA vaccine derived from conserved and experimentally validated epitopes of avian influenza type A virus: a reverse vaccinology approach[J]. Clin. Exp. Vaccine Res., 2023, 12(2): 156-171. |
74 | ROHNER E, YANG R, FOO K S, et al.. Unlocking the promise of mRNA therapeutics[J]. Nat. Biotechnol., 2022, 40: 1586-1600. |
75 | BARBIER A J, JIANG A Y, ZHANG P, et al.. The clinical progress of mRNA vaccines and immunotherapies[J]. Nat. Biotechnol., 2022, 40: 840-854. |
76 | LIU C, SHI Q, HUANG X, et al.. mRNA-based cancer therapeutics[J]. Nat. Rev. Cancer, 2023, 23: 526-543. |
77 | Pipeline of arcturus-owned mRNA therapeutic candidates[EB/OL].(2023-10-25)[2023-11-28]. . |
78 | AZD 8601 EPICCURE Phase II trial demonstrated safety and tolerability in patients with heart failure[EB/OL]. (2021-11-15)[2023-11-28].. |
79 | Safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy trial of BNT 141 in patients with unresectable or metastatic CLDN 18.2gastric-positive, pancreatic, ovarian and biliary tract tumors[EB/OL]. (2023-10-02)[2023-11-28]. . |
80 | SCHAEFER M, KAPOOR U, JANTSCH M F. Understanding RNA modifications: the promises and technological bottlenecks of the 'epitranscriptome'[J/OL]. Open Biol., 2017, 7(5): 170077[2023-10-20]. . |
81 | KIM D Y, ATASHEVA S, MCAULEY A J, et al.. Enhancement of protein expression by alphavirus replicons by designing self-replicating subgenomic RNAs[J]. Proc. Natl. Acad. Sci. USA, 2014, 111(29): 10708-10713. |
82 | MCKAY P F, HU K, BLAKNEY A K, et al.. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice[J/OL]. Nat. Commun., 2020, 11: 3523[2023-10-20]. . |
83 | WESSELHOEFT R A, KOWALSKI P S, ANDERSON D G. Engineering circular RNA for potent and stable translation in eukaryotic cells[J/OL]. Nat. Commun., 2018, 9: 2629[2023-10-20]. . |
84 | SASSO J M, AMBROSE B J B, TENCHOV R, et al.. The progress and promise of RNA medicine-an arsenal of targeted treatments[J]. J. Med. Chem., 2022, 65(10): 6975-7015. |
85 | PAUNOVSKA K, LOUGHREY D, DAHLMAN J E. Drug delivery systems for RNA therapeutics[J]. Nat. Rev. Genet., 2022, 23: 265-280. |
86 | ZHANG Y, SUN C, WANG C, et al.. Lipids and lipid derivatives for RNA delivery[J]. Chem. Rev., 2021, 121(20): 12181-12277. |
87 | CUI S, WANG Y, GONG Y, et al.. Correlation of the cytotoxic effects of cationic lipids with their headgroups[J]. Toxicol. Res., 2018, 7(3): 473-479. |
88 | XIA Y, TIAN J, CHEN X. Effect of surface properties on liposomal siRNA delivery[J]. Biomaterials, 2016, 79: 56-68. |
89 | CULLIS P R, HOPE M J. Lipid nanoparticle systems for enabling gene therapies[J]. Mol. Ther., 2017, 25(7): 1467-1475. |
90 | GREF R, MINAMITAKE Y, PERACCHIA M T, et al.. Biodegradable long-circulating polymeric nanospheres[J]. Science, 1994, 263(5153): 1600-1603. |
91 | SU S A, XIE Y, FU Z, et al.. Emerging role of exosome-mediated intercellular communication in vascular remodeling[J]. Oncotarget, 2017, 8(15): 25700-25712. |
92 | MA Y, LI X, ZHAO R, et al.. Creating de novo peptide-based bioactivities: from assembly to origami[J]. RSC Adv., 2022, 12(40): 25955-25961. |
93 | LLOREN K K S, JAWALAGATTI V, HEWAWADUGE C, et al.. Salmonella-mediated oral delivery of multiple-target vaccine constructs with conserved and variable regions of SARS-CoV-2 protect against the Delta and Omicron variants in hamster[J/OL]. Microbes Infect., 2023, 25(5): 105101[2023-10-20]. . |
94 | CUI H, ZHU X, LI S, et al.. Liver-targeted delivery of oligonucleotides with N-acetylgalactosamine conjugation[J]. ACS Omega, 2021, 6(25): 16259-16265. |
95 | DEBACKER A J, VOUTILA J, CATLEY M, et al.. Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic drug[J]. Mol. Ther., 2020, 28(8): 1759-1771. |
96 | CHENG Q, WEI T, FARBIAK L, et al.. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing[J]. Nat. Nanotechnol., 2020, 15: 313-320. |
97 | CHEN J, YE Z, HUANG C,et al.. Lipid nanoparticle-mediated lymph nodetargeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response[J/OL].Proc. Natl. Acad. Sci. USA,2022,119(34):e2207841119[2023-10-20]. . |
98 | MELAMED J R, YERNENI S S, ARRAL M L, et al.. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer[J/OL]. Sci. Adv., 2023, 9(4): eade1444[2023-10-20]. . |
99 | KIM J, JOZIC A, LIN Y, et al.. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation[J]. ACS Nano, 2022, 16(9): 14792-14806. |
[1] | 门佩璇, 肖宇锋, 张玢. 基于计量学方法分析数字PCR技术的临床应用现状与技术热点[J]. 生物技术进展, 2022, 12(4): 606-613. |
[2] | 寻治铭,赵清辉,琚芳迪,何晋,姚婷婷,赵鹏翔,马雪梅,谢飞. 氢分子在临床应用中的研究进展[J]. 生物技术进展, 2019, 9(3): 217-222. |
[3] | 何洁, 郭采平. 人转铁蛋白的分离纯化及临床应用进展[J]. 生物技术进展, 2019, 9(1): 28-34. |
[4] | 陆腾飞,邬杨楠,裴文华,马月辉,关伟军. 内皮祖细胞的生物学特性及其应用[J]. 生物技术进展, 2017, 7(4): 266-271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部