[1] |
ALJABALI A A, OBEID M A, BASHATWAH R M, et al.. Nanomaterials and their impact on the immune system[J/OL]. Int. J. Mol. Sci., 2023, 24(3): 2008[2025-06-25]. .
|
[2] |
KIM H Y, YOON J J, KIM D S, et al.. YG-1 extract improves acute pulmonary inflammation by inducing bronchodilation and inhibiting inflammatory cytokines[J/OL]. Nutrients, 2021, 13(10): 3414[2025-06-25]. .
|
[3] |
DEVOY J, AL-ABED S, CERDAN B, et al.. Analysis of carbon nanotube levels in organic matter: an inter-laboratory comparison to determine best practice[J]. Nanotoxicology, 2024, 18(2): 214-228.
|
[4] |
DÍEZ-PASCUAL A M. Carbon-based nanomaterials 4.0[J/OL]. Int. J. Mol. Sci., 2024, 25(5): 3032[2025-06-25]. .
|
[5] |
KANDHOLA G, PARK S, WLIM J, et al.. Nanomaterial-based scaffolds for tissue engineering applications: a review on graphene, carbon nanotubes and nanocellulose[J]. Tissue Eng. Regen. Med., 2023, 20(3): 411-433.
|
[6] |
YUAN X, ZHANG X, SUN L, et al.. Cellular toxicity and immunological effects of carbon-based nanomaterials[J/OL]. Part. Fibre Toxicol., 2019, 16(1): 18[2025-06-25]. .
|
[7] |
LI Y, CAO J. The impact of multi-walled carbon nanotubes (MWCNTs) on macrophages: contribution of MWCNT characteristics[J]. Sci. China Life Sci., 2018, 61(11): 1333-1351.
|
[8] |
NALETOVA I, TOMASELLO B, ATTANASIO F, et al.. Prospects for the use of metal-based nanoparticles as adjuvants for local cancer immunotherapy[J/OL]. Pharmaceutics, 2023, 15(5): 1346[2025-06-25]. .
|
[9] |
PATRICK B, AKHTAR T, KOUSAR R, et al.. Carbon nanomaterials: emerging roles in immuno-oncology[J/OL]. Int. J. Mol. Sci., 2023, 24(7): 6600[2025-06-25]. .
|
[10] |
BURRES C, WONG R, PEDREIRA F, et al.. A regulatory compliant short-term oral toxicity study of soluble [60] fullerenes in rats[J]. Excli. J., 2024, 23: 772-786.
|
[11] |
CARY C, STAPLETON P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers[J]. Arch. Toxicol., 2023, 97(8): 2111-2131.
|
[12] |
FIGAROL A, POURCHEZ J, BOUDARD D, et al.. In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalization[J]. Toxicol. Vitro, 2015, 30(Pt B): 476-485.
|
[13] |
KONG C, CHEN J, LI P, et al.. Respiratory toxicology of graphene-based nanomaterials: a review[J/OL]. Toxics, 2024, 12(1): 82[2025-06-25]. .
|
[14] |
ZHANG M, XU Y, YANG M, et al.. Clearance of single-wall carbon nanotubes from the mouse lung: a quantitative evaluation[J]. Nanoscale Adv., 2020, 2(4): 1551-1559.
|
[15] |
AWASHRA M, MYNARZ P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective[J]. Nanoscale Adv., 2023, 5(10): 2674-2723.
|
[16] |
WANG X, GUO J, CHEN T, et al.. Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor[J]. Toxicol. Vitro, 2012, 26(6): 799-806.
|
[17] |
XU C, LIU Q, LIU H, et al.. Toxicological assessment of multi-walled carbon nanotubes in vitro: potential mitochondria effects on male reproductive cells[J]. Oncotarget, 2016, 7(26): 39270-39278.
|
[18] |
KAGAN V E, KAPRALOV A A, CROIX C M, et al.. Lung macrophages "digest" carbon nanotubes using a superoxide/peroxynitrite oxidative pathway[J]. ACS Nano, 2014, 8(6): 5610-5621.
|
[19] |
TIAN N, DUAN H, CAO T, et al.. Macrophage-targeted nanoparticles mediate synergistic photodynamic therapy and immunotherapy of tuberculosis[J]. RSC Adv., 2023, 13(3): 1727-1737.
|
[20] |
CHETYRKINA M R, FEDOROV F S, NASIBULIN A G. In vitro toxicity of carbon nanotubes: a systematic review[J]. RSC Adv., 2022, 12(25): 16235-16256.
|
[21] |
MIAO Y, WANG S, ZHANG B, et al.. Carbon dot-based nanomaterials: a promising future nano-platform for targeting tumor-associated macrophages[J/OL]. Front. Immunol., 2023, 14: 1133238[2025-06-25]. .
|
[22] |
SALLAM A A, AHMED M M, EL-MAGD M A, et al.. Quercetin-ameliorated, multi-walled carbon nanotubes-induced immunotoxic, inflammatory, and oxidative effects in mice[J/OL]. Molecules, 2022, 27(7): 2117[2025-06-25]. .
|
[23] |
WANG T H, WATANABE K, MUROMACHI K, et al.. Carbon nanotubes induce mineralization of human cementoblasts[J]. J. Endod., 2024, 50(8): 1117-1123.
|
[24] |
SUN Z, WANG W, MENG J, et al.. Multi-walled carbon nanotubes conjugated to tumor protein enhance the uptake of tumor antigens by human dendritic cells in vitro [J]. Cell Res., 2010, 20(10): 1170-1173.
|
[25] |
AHLAWAT J, ASIL S M, BARROSO G G, et al.. Application of carbon nano onions in the biomedical field: recent advances and challenges[J]. Biomater. Sci., 2021, 9(3): 626-644.
|
[26] |
MEHRALIAN F, TADI BENI Y. Molecular dynamics analysis on axial buckling of functionalized carbon nanotubes in thermal environment[J/OL]. J. Mol. Model., 2017, 23(12): 330[2025-06-25]. .
|
[27] |
LORENZO S, GONZÁLEZ-FERNÁNDEZ A. Handbook of immunological properties of engineered nanomaterials[M]. Singapore: World Scientific, 2013: 517-545.
|
[28] |
FRIESEN A, FRITSCH-DECKER S, MÜLHOPT S, et al.. Comparing the toxicological responses of pulmonary air-liquid interface models upon exposure to differentially treated carbon fibers[J/OL]. Int. J. Mol. Sci., 2023, 24(3): 1927[2025-06-25]. .
|
[29] |
SHEEMA A N, NAIKI-ITO A, KAKEHASHI A, et al.. Fullerene and fullerene whisker are not carcinogenic to the lungs and pleura in rat long-term study after 2-week intra-tracheal intrapulmonary administration[J]. Arch. Toxicol., 2024, 98(12): 4143-4158.
|
[30] |
LIU K Y, GAO Y, XIAO W, et al.. Multidimensional analysis of lung lymph nodes in a mouse model of allergic lung inflammation following PM2.5 and indeno [1, 2, 3-cd] pyrene exposure[J/OL]. Environ. Health Perspect., 2023, 131(3): 37014[2025-06-25]. .
|
[31] |
PERVIZAJ-ORUQAJ L, SELVAKUMAR B, FERRERO M R, et al.. Alveolar macrophage-expressed Plet1 is a driver of lung epithelial repair after viral pneumonia[J/OL]. Nat. Commun., 2024, 15(1): 87[2025-06-25]. .
|
[32] |
RONZANI C, CASSET A, PONS F. Exposure to multi-walled carbon nanotubes results in aggravation of airway inflammation and remodeling and in increased production of epithelium-derived innate cytokines in a mouse model of asthma[J]. Arch. Toxicol. 2014, 88(2):489-499.
|
[33] |
MOHAMMED A N, YADAV N, KAUR P, et al.. Immunomodulation of susceptibility to pneumococcal pneumonia infection in mouse lungs exposed to carbon nanoparticles via dysregulation of innate and adaptive immune responses[J/OL]. Toxicol. Appl. Pharmacol., 2024, 483: 116820[2025-06-25]. .
|
[34] |
RANJITKAR S, KRAJEWSKI D, TEDESCHI C, et al.. Mast cell responses in a mouse model of food allergy are regulated via a ST2/IL-4 axis[J]. Allergy, 2024, 79(9): 2561-2564.
|
[35] |
WANG Q, HAN J, WEI M, et al.. Multi-walled carbon nanotubes accelerate leukaemia development in a mouse model[J/OL]. Toxics, 2024, 12(9): 646[2025-06-25]. .
|
[36] |
KRUPNIK L, JOSHI P, KAPPLER A, et al.. Critical nanomaterial attributes of iron-carbohydrate nanoparticles: leveraging orthogonal methods to resolve the 3-dimensional structure[J/OL]. Eur. J. Pharm. Sci., 2023, 188: 106521[2025-06-25]. .
|
[37] |
SHARMA M, ALESSANDRO P, CHERIYAMUNDATH S, et al.. Therapeutic and diagnostic applications of carbon nanotubes in cancer: recent advances and challenges[J]. J. Drug Target., 2024, 32(3): 287-299.
|
[38] |
PANNUZZO M, ESPOSITO S, WU L P, et al.. Overcoming nanoparticle-mediated complement activation by surface PEG pairing[J]. Nano Lett., 2020, 20(6): 4312-4321.
|
[39] |
ALJABALI A A, OBEID M A, BASHATWAH R M, et al.. Nanomaterials and their impact on the immune system[J/OL]. Int. J. Mol. Sci., 2023, 24(3): 2008[2025-06-25]. .
|
[40] |
TAYLOR-JUST A J, IHRIE M D, DUKE K S, et al.. The pulmonary toxicity of carboxylated or aminated multi-walled carbon nanotubes in mice is determined by the prior purification method[J/OL]. Part. Fibre Toxicol., 2020, 17(1): 60[2025-06-25]. .
|
[41] |
QING T L, JIANG X Y, LI J F, et al.. Celastrol reduces lung inflammation induced by multiwalled carbon nanotubes in mice via NF-κB-signaling pathway[J]. Inhal. Toxicol., 2024, 36(4): 275-281.
|