生物技术进展 ›› 2025, Vol. 15 ›› Issue (2): 212-219.DOI: 10.19586/j.2095-2341.2024.0175
• 进展评述 • 上一篇
收稿日期:
2024-11-08
接受日期:
2025-02-12
出版日期:
2025-03-25
发布日期:
2025-04-29
通讯作者:
翟丽丽
作者简介:
崔兆惠 E-mail: zhaohuicui@126.com;
基金资助:
Zhaohui CUI(), Ling GUO, Xudong SHEN, Yi LIN, Lili ZHAI(
)
Received:
2024-11-08
Accepted:
2025-02-12
Online:
2025-03-25
Published:
2025-04-29
Contact:
Lili ZHAI
摘要:
生物技术药物在肿瘤、自身免疫性疾病及其他复杂疾病的治疗中取得了日益显著的治疗效果。使用生物技术药物进行治疗时存在免疫原性风险,导致药物疗效和治疗效果降低,甚至产生严重的不良反应。在保持生物技术药物药代动力学特性和治疗效果的基础上,降低或去除其免疫原性成为药物开发过程的重要环节。了解驱动生物技术药物免疫原性的复杂机制以及制定有效的策略降低免疫原性风险对于提高药物疗效和安全性至关重要。综述了生物技术药物免疫原性产生机制的研究进展,讨论了影响免疫原性的因素,重点阐述了在药物开发过程中降低免疫原性的策略,以期为生物技术药物的研发提供参考。
中图分类号:
崔兆惠, 郭玲, 沈旭东, 林毅, 翟丽丽. 生物技术药物的免疫原性产生机制与控制策略[J]. 生物技术进展, 2025, 15(2): 212-219.
Zhaohui CUI, Ling GUO, Xudong SHEN, Yi LIN, Lili ZHAI. Immunogenicity Formation Mechanism and Control Strategy of Biopharmaceuticals[J]. Current Biotechnology, 2025, 15(2): 212-219.
药物因素 | 患者因素 |
---|---|
天然蛋白与治疗性蛋白的分子结构、氨基酸序列差异(人源化程度) | 疾病类型(免疫介导/非免疫介导的疾病) |
治疗性蛋白聚集 | 年龄 |
治疗性蛋白修饰-氧化、脱酰胺、糖基化 | 与其他药物同用 |
杂质、制剂组分、佐剂 | 剂量 |
剂型 | 治疗频率 |
生产过程 | 给药途径 |
表1 影响生物技术药物免疫原性的因素
Table 1 Factors affecting the immunogenicity of biopharmaceuticals
药物因素 | 患者因素 |
---|---|
天然蛋白与治疗性蛋白的分子结构、氨基酸序列差异(人源化程度) | 疾病类型(免疫介导/非免疫介导的疾病) |
治疗性蛋白聚集 | 年龄 |
治疗性蛋白修饰-氧化、脱酰胺、糖基化 | 与其他药物同用 |
杂质、制剂组分、佐剂 | 剂量 |
剂型 | 治疗频率 |
生产过程 | 给药途径 |
1 | SUN R, QIAN M G, ZHANG X. T and B cell epitope analysis for the immunogenicity evaluation and mitigation of antibody-based therapeutics[J/OL]. mAbs, 2024, 16(1): 2324836[2025-02-27]. . |
2 | TOVEY M G, LEGRAND J, LALLEMAND C. Overcoming immunogenicity associated with the use of biopharmaceuticals[J]. Expert Rev. Clin. Pharmacol., 2011, 4(5): 623-631. |
3 | PEDERSEN M E, ØSTERGAARD J, GLINTBORG B, et al.. Assessment of immunogenicity and drug activity in patient sera by flow-induced dispersion analysis[J/OL]. Sci. Rep., 2022, 12: 4670[2025-02-27]. . |
4 | BAKER M P, REYNOLDS H M, LUMICISI B, et al.. Immunogenicity of protein therapeutics: the key causes, consequences and challenges[J]. Self Nonself, 2010, 1(4): 314-322. |
5 | ROSSOTTI M A, BÉLANGER K, HENRY K A, et al.. Immunogenicity and humanization of single-domain antibodies[J]. FEBS J., 2022, 289(14): 4304-4327. |
6 | ORDÁS I, MOULD D R, FEAGAN B G, et al.. Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms[J]. Clin. Pharmacol. Ther., 2012, 91(4): 635-646. |
7 | DVORSCEK A R, MCKENZIE C I, STÄHELI V C, et al.. Conversion of vaccines from low to high immunogenicity by antibodies with epitope complementarity[J]. Immunity, 2024, 57(10): 2433-2452. |
8 | ALHARBI N, SKWARCZYNSKI M, TOTH I. The influence of component structural arrangement on peptide vaccine immunogenicity[J/OL]. Biotechnol. Adv., 2022, 60: 108029[2025-02-27]. . |
9 | EON-DUVAL A, BROLY H, GLEIXNER R. Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach[J]. Biotechnol. Prog., 2012, 28(3): 608-622. |
10 | RATHORE A S, WINKLE H. Quality by design for biopharmaceuticals[J]. Nat. Biotechnol., 2009, 27(1): 26-34. |
11 | KARLE A C. Applying MAPPs assays to assess drug immunogenicity[J/OL]. Front. Immunol., 2020, 11: 698[2025-02-27]. . |
12 | WANG G, WU T, NING W, et al.. TLimmuno2: predicting MHC class Ⅱ antigen immunogenicity through transfer learning[J/OL]. Brief. Bioinform., 2023, 24(3): bbad116[2025-02-27]. . |
13 | NEWBY M L, ALLEN J D, CRISPIN M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens[J/OL]. Biotechnol. Adv., 2024, 70: 108283[2025-02-27]. . |
14 | MARIUZZA R A, WU D, PIERCE B G. Structural basis for T cell recognition of cancer neoantigens and implications for predicting neoepitope immunogenicity[J/OL]. Front. Immunol., 2023, 14: 1303304[2025-02-27]. . |
15 | EL-MANZALAWY Y, DOBBS D, HONAVAR V. Predicting linear B-cell epitopes using string kernels[J]. J. Mol. Recognit., 2008, 21(4): 243-255. |
16 | CONNER S D, SCHMID S L. Regulated portals of entry into the cell[J]. Nature, 2003, 422(6927): 37-44. |
17 | SUN R, QIAN M G, ZHANG X. T and B cell epitope analysis for the immunogenicity evaluation and mitigation of antibody-based therapeutics[J/OL]. mAbs, 2024, 16(1): 2324836[2025-02-27]. . |
18 | MUELLER R, KARLE A, VOGT A, et al.. Evaluation of the immuno-stimulatory potential of stopper extractables and leachables by using dendritic cells as readout[J]. J. Pharm. Sci., 2009, 98(10): 3548-3561. |
19 | PEDROZA-ESCOBAR D, CASTILLO-MALDONADO I, GONZÁLEZ-CORTÉS T, et al.. Molecular bases of protein antigenicity and determinants of immunogenicity, anergy, and mitogenicity[J]. Protein Pept. Lett., 2023, 30(9): 719-733. |
20 | DE GROOT A S, KHAN S, MATTEI A E, et al.. Does human homology reduce the potential immunogenicity of non-antibody scaffolds?[J/OL]. Front. Immunol., 2023, 14: 1215939[2025-02-27]. . |
21 | CROFT N P. Peptide presentation to T cells: solving the immunogenic puzzle: systems immunology profiling of antigen presentation for prediction of CD8+ T cell immunogenicity[J/OL]. Bioessays, 2020, 42(3): e1900200[2025-02-27]. . |
22 | PICHLER W J. Adverse side-effects to biological agents[J]. Allergy, 2006, 61(8): 912-920. |
23 | ZHOU Y, PENNY H L, KROENKE M A, et al.. Immunogenicity assessment of bispecific antibody-based immunotherapy in oncology[J/OL]. J. Immunother. Cancer, 2022, 10(4): e004225[2025-02-27]. . |
24 | SCHELLEKENS H. Biosimilar therapeutics-what do we need to consider?[J]. NDT Plus, 2009, 2(1): 27-36. |
25 | VAN BEERS M M C, SAUERBORN M, GILLI F, et al.. Oxidized and aggregated recombinant human interferon beta is immunogenic in human interferon beta transgenic mice[J]. Pharm. Res., 2011, 28(10): 2393-2402. |
26 | ZHOU S, SCHÖNEICH C, SINGH S K. Biologics formulation factors affecting metal leachables from stainless steel[J]. AAPS PharmSciTech, 2011, 12(1): 411-421. |
27 | CROMWELL M E M, HILARIO E, JACOBSON F. Protein aggregation and bioprocessing[J]. AAPS J., 2006, 8(3): 572-579. |
28 | RUPERTO N, BAZSO A, RAVELLI A, et al.. The paediatric rheumatology international trials organization (PRINTO)[J]. Lupus, 2007, 16(8): 670-676. |
29 | GOPAL A K, KAHL B S, FLOWERS C R, et al.. Idelalisib is effective in patients with high-risk follicular lymphoma and early relapse after initial chemoimmunotherapy[J]. Blood, 2017, 129(22): 3037-3039. |
30 | VITA R, MAHAJAN S, OVERTON J A, et al.. The immune epitope database (IEDB): 2018 update[J/OL]. Nucleic Acids Res., 2019, 47(D1): 339-343. |
31 | MATTEI A E, GUTIERREZ A H, SESHADRI S, et al.. In silico methods for immunogenicity risk assessment and human homology screening for therapeutic antibodies[J/OL]. mAbs, 2024, 16(1): 2333729[2025-02-27]. . |
32 | LI W, WEI J, JIANG Q, et al.. In silico immunogenicity assessment of therapeutic peptides[J]. Curr. Med. Chem., 2024, 31(26): 4100-4110. |
33 | MAZOR R, EBERLE J A, HU X, et al.. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes[J]. Proc. Natl. Acad. Sci. USA, 2014, 111(23): 8571-8576. |
34 | HOSHITSUKI K, RATHOD S, RAMSEY M J, et al.. Adalimumab immunogenicity is negatively correlated with anti-hinge antibody levels in patients with rheumatoid arthritis[J]. J. Pharmacol. Exp. Ther., 2020, 375(3): 488-497. |
35 | ARSLAN M, KARADAĞ D, KALYONCU S. Protein engineering approaches for antibody fragments: directed evolution and rational design approaches[J]. Turk. J. Biol., 2019, 43(1): 1-12. |
36 | JANKOWSKI W, MCGILL J, DANIEL LAGASSÉ H A, et al.. Mitigation of T-cell dependent immunogenicity by reengineering factor Ⅶa analogue[J]. Blood Adv., 2019, 3(17): 2668-2678. |
37 | 杜力,刘晓志,魏敬双,等.蛋白质药物糖基化工程化改造研究进展[J].生物技术进展,2020,10(5):448-455. |
DU L, LIU X Z, WEI J S, et al.. Research progress of glycosylation engineering of protein drug[J]. Curr. Biotechnol., 2020, 10(5): 448-455. | |
38 | BOUNE S, HU P, EPSTEIN A L, et al.. Principles of N-linked glycosylation variations of IgG-based therapeutics: pharmacokinetic and functional considerations[J/OL]. Antibodies, 2020, 9(2): 22[2025-02-27]. . |
39 | KERNSTOCK R, SPERINDE G, FINCO D, et al.. Clinical immunogenicity risk assessment strategy for a low risk monoclonal antibody[J/OL]. Aaps J., 2020, 22(3): 60[2025-02-27]. . |
40 | DOZIER J K, DISTEFANO M D. Site-specific pegylation of therapeutic proteins[J]. Int. J. Mol. Sci., 2015, 16(10): 25831-25864. |
41 | ZINSLI L V, STIERLIN N, LOESSNER M J, et al.. Deimmunization of protein therapeutics-recent advances in experimental and computational epitope prediction and deletion[J]. Comput. Struct. Biotechnol. J., 2021, 19: 315-329. |
42 | NEWBY M L, ALLEN J D, CRISPIN M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens[J/OL]. Biotechnol. Adv., 2024, 70: 108283[2025-02-27]. . |
43 | MANNING M C, CHOU D K, MURPHY B M, et al.. Stability of protein pharmaceuticals: an update[J]. Pharm. Res., 2010, 27(4): 544-575. |
44 | TOROSANTUCCI R, MOZZICONACCI O, SHAROV V, et al.. Chemical modifications in aggregates of recombinant human insulin induced by metal-catalyzed oxidation: covalent cross-linking via Michael addition to tyrosine oxidation products[J]. Pharm. Res., 2012, 29(8): 2276-2293. |
45 | ASMANI A Z A, ZAINUDDIN A F F, AHMAD AZMI MURAD N, et al.. Immunogenicity of monoclonal antibody: causes, consequences, and control strategies[J/OL]. Pathol. Res. Pract., 2024, 263: 155627[2025-02-27]. . |
46 | RASHEED Z, ALI R. Reactive oxygen species damaged human serum albumin in patients with type 1 diabetes mellitus: Biochemical and immunological studies[J]. Life Sci., 2006, 79(24): 2320-2328. |
47 | NABHAN M, PALLARDY M, TURBICA I. Immunogenicity of bioproducts: cellular models to evaluate the impact of therapeutic antibody aggregates[J/OL]. Front. Immunol., 2020, 11: 725[2025-02-27]. . |
48 | HERMELING S, CROMMELIN D J A, SCHELLEKENS H, et al.. Structure-immunogenicity relationships of therapeutic proteins[J]. Pharm. Res., 2004, 21(6): 897-903. |
49 | ROSENBERG A S. Effects of protein aggregates: an immunologic perspective[J]. AAPS J., 2006, 8(3): 501-507. |
50 | SAUERBORN M, BRINKS V, JISKOOT W, et al.. Immunological mechanism underlying the immune response to recombinant human protein therapeutics[J]. Trends Pharmacol. Sci., 2010, 31(2): 53-59. |
51 | SEIDL A, HAINZL O, RICHTER M, et al.. Tungsten-induced denaturation and aggregation of epoetin alfa during primary packaging as a cause of immunogenicity[J]. Pharm. Res., 2012, 29(6): 1454-1467. |
52 | WALSH G. Biopharmaceutical benchmarks 2010[J]. Nat. Biotechnol., 2010, 28(9): 917-924. |
53 | COST G J, FREYVERT Y, VAFIADIS A, et al.. BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells[J]. Biotechnol. Bioeng., 2010, 105(2): 330-340. |
54 | TUAMEH A, HARDING S E, DARTON N J. Methods for addressing host cell protein impurities in biopharmaceutical product development[J/OL]. Biotechnol. J., 2023, 18(3): e2200115[2025-02-27]. . |
55 | CHUNG C H, MIRAKHUR B, CHAN E, et al.. Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1, 3-galactose[J]. N. Engl. J. Med., 2008, 358(11): 1109-1117. |
56 | SALEH H, EMBRY S, NAULI A, et al.. Anaphylactic reactions to oligosaccharides in red meat: a syndrome in evolution[J/OL]. Clin. Mol. Allergy, 2012, 10(1): 5[2025-02-27]. . |
57 | QIAN J, LIU T, YANG L, et al.. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion[J]. Anal. Biochem., 2007, 364(1): 8-18. |
58 | JEFFERIS R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action[J]. Trends Pharmacol. Sci., 2009, 30(7): 356-362. |
59 | BOSQUES C J, COLLINS B E, MEADOR J W, et al.. Chinese Hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins[J]. Nat. Biotechnol., 2010, 28(11): 1153-1156. |
60 | PADLER-KARAVANI V, VARKI A. Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk[J]. Xenotransplantation, 2011, 18(1): 1-5. |
61 | GHADERI D, TAYLOR R E, PADLER-KARAVANI V, et al.. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins[J]. Nat. Biotechnol., 2010, 28(8): 863-867. |
62 | MAEDA E, KITA S, KINOSHITA M, et al.. Analysis of nonhuman N-glycans as the minor constituents in recombinant monoclonal antibody pharmaceuticals[J]. Anal. Chem., 2012, 84(5): 2373-2379. |
63 | VAN BEERS M M C, JISKOOT W, SCHELLEKENS H. On the role of aggregates in the immunogenicity of recombinant human interferon beta in patients with multiple sclerosis[J]. J. Interferon Cytokine Res., 2010, 30(10): 767-775. |
64 | YEASMIN M, MOLLA M M A, ABDULLAH AL MASUD H M, et al.. Safety and immunogenicity of zika virus vaccine: a systematic review of clinical trials[J/OL]. Rev. Med. Virol., 2023, 33(1): e2385[2025-02-27]. . |
65 | LI L, YAN X, XIA M, et al.. Nanoparticle/nanocarrier formulation as an antigen: the immunogenicity and antigenicity of itself[J]. Mol. Pharm., 2022, 19(1): 148-159. |
66 | MARTINA C E, CROWE J E, MEILER J. Glycan masking in vaccine design: targets, immunogens and applications[J/OL]. Front. Immunol., 2023, 14: 1126034[2025-02-27]. . |
[1] | 王光宇,肖美添,赵鹏,陈俊德. 胶原聚集体及其聚集行为研究进展[J]. 生物技术进展, 2017, 7(6): 587-593. |
[2] | 曹晨华,刘晓志,段月娇,刘素霞,赵伟,常亮,纪丽曼,高健. 实时定量PCR法检测生物技术药物中宿主基因组DNA残留[J]. 生物技术进展, 2014, 4(2): 142-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部