生物技术进展 ›› 2023, Vol. 13 ›› Issue (5): 698-703.DOI: 10.19586/j.2095-2341.2023.0064
收稿日期:
2023-05-06
接受日期:
2023-06-07
出版日期:
2023-09-25
发布日期:
2023-10-10
通讯作者:
江一帆
作者简介:
曹辉 E-mail: 610753996@qq.com;
基金资助:
Hui CAO(), Jing DONG, Yu JIA, Yifan JIANG()
Received:
2023-05-06
Accepted:
2023-06-07
Online:
2023-09-25
Published:
2023-10-10
Contact:
Yifan JIANG
摘要:
CHO细胞作为宿主细胞广泛应用于生物药工业化生产中。其中,CHO-K1、CHO-DG44和CHO-S是最常见的3种亚型。虽然这些亚型是从共同的原始CHO细胞分离出来的,但在不同的实验室或生物医药公司、研究人员、培养基或培养方式下连续传代、驯化和保存,使得CHO细胞积累了大量变异,导致宿主细胞应用于抗体药生产时会在细胞生长状态、抗体表达量及以糖型为代表的质量属性方面表现出较大差异。综述了CHO细胞不同亚型的染色体差异、生长状态、表达差异以及糖型差异,以期为抗体药物研发中宿主细胞的选择提供参考。
中图分类号:
曹辉, 董静, 贾宇, 江一帆. 不同亚型CHO宿主细胞对抗体表达的影响[J]. 生物技术进展, 2023, 13(5): 698-703.
Hui CAO, Jing DONG, Yu JIA, Yifan JIANG. Effects of Different Sources of CHO Host Cells on Antibody Expression[J]. Current Biotechnology, 2023, 13(5): 698-703.
1 | KAPLON H, CHENOWETH A, CRESCIOLI S. Antibodies to watch in 2023[J/OL]. mAbs,2023, 15(1): e2153410[2022-12-06]. . |
2 | 药智网.2021全球药品销售TOP10: 药王“修美乐”跌落榜首,新冠疫苗大卖 367亿[EB/OL]. [2023-05-30]. . |
3 | 郑惠惠, 江洪. CHO细胞表达系统研究进展[J]. 生物技术进展, 2016, 6(4): 239-243. |
4 | 陶维红, 秦民民, 张哲如. CHO细胞株开发技术策略探讨[J]. 生物技术进展, 2014, 4(6): 394-399. |
5 | LAI T, YANG Y, NG S K. Advances in mammalian cell line development technologies for recombinant protein production[J]. Pharmaceuticals, 2013, 6(5): 579-603. |
6 | FISCHER S, HANDRICK R, OTTE K. The art of CHO cell engineering: a comprehensive retrospect and future perspectives[J]. Biotechnol. Adv., 2015, 33(8): 1878-1896. |
7 | WEINGUNY M, KLANERT G, EISENHUT P, et al.. Directed evolution approach to enhance efficiency and speed of outgrowth during single cell subcloning of Chinese Hamster Ovary cells[J]. Comput. Struct. Biotechnol. J., 2020, 18: 1320-1329. |
8 | PUCK T T, CIECIURA S J, ROBINSON A. Genetics of somatic mammalian cells. Ⅲ. Long-term cultivation of euploid cells from human and animal subjects[J]. J. Exp. Med., 1958, 108(6): 945-956. |
9 | TIHANYI B, NYITRAY L. Recent advances in CHO cell line development for recombinant protein production[J]. Drug Discov. Today Technol., 2020, 38: 25-34. |
10 | WURM F. CHO quasispecies-mplications for manufacturing processes[J]. Processes, 2013, 1(3): 296-311. |
11 | LEWIS N E, LIU X, LI Y, et al.. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome[J]. Nat. Biotechnol., 2013, 31(8): 759-765. |
12 | HUHN S, CHANG M, KUMAR A, et al.. Chromosomal instability drives convergent and divergent evolution toward advantageous inherited traits in mammalian CHO bioproduction lineages[J/OL]. iScience, 2022, 25(4): 104074[2023-01-15]. . |
13 | PASSERINI V, OZERI-GALAI E, DE PAGTER M S, et al.. The presence of extra chromosomes leads to genomic instability[J/OL]. Nat. Commun., 2016, 7: 10754[2023-01-15]. . |
14 | DREWS R M, HERNANDO B, TARABICHI M, et al.. A pan-cancer compendium of chromosomal instability[J]. Nature, 2022, 606(7916): 976-983. |
15 | TAKADA H, MIURA T, FUJIBAYASHI S, et al.. Detailed chromosome analysis of wild-type, immortalized fibroblasts with SV40T, E6E7, combinational introduction of cyclin dependent kinase 4, cyclin D1, telomerase reverse transcriptase[J]. In Vitro Cell. Dev. Biol. Anim., 2021, 57(10): 998-1005. |
16 | TURILOVA V I, GORYACHAYA T S, YAKOVLEVA T K. Chinese hamster ovary cell line DXB-11: chromosomal instability and karyotype heterogeneity[J/OL]. Mol. Cytogenet., 2021, 14(1): 11[2023-03-24]. . |
17 | RAY M, MOHANDAS T. Proposed banding nomenclature for the Chinese hamster chromosomes (Cricetulus griseus)[J]. Cytogenet. Cell Genet., 1976, 16(1-5): 83-91. |
18 | YAMANO N, KUMAMOTO T, TAKAHASHI M, et al.. Stability difference of each chromosome in Chinese Hamster Ovary cell line[J]. BMC Proc., 2015, 9(9): P1 [2023-03-08]. . |
19 | VCELAR S, MELCHER M, AUER N, et al.. Changes in chromosome counts and patterns in CHO cell lines upon generation of recombinant cell lines and subcloning[J/OL]. Biotechnol. J., 2018, 13(3): e1700495[2023-03-08]. . |
20 | DEROUAZI M, MARTINET D, BESUCHET SCHMUTZ N, et al.. Genetic characterization of CHO production host DG44 and derivative recombinant cell lines[J]. Biochem. Biophys. Res. Commun., 2006, 340(4): 1069-1077. |
21 | OGATA N, NISHIMURA A, MATSUDA T, et al.. Single-cell transcriptome analyses reveal heterogeneity in suspension cultures and clonal markers of CHO-K1 cells[J]. Biotechnol. Bioeng., 2021, 118(2): 944-951. |
22 | BAEZ A, SHILOACH J. Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds[J/OL]. Microb. Cell Fact., 2014, 13: 181[2023-03-06]. . |
23 | LIN K W, YAN J. Endings in the middle: current knowledge of interstitial telomeric sequences[J]. Mutat. Res., 2008, 658(1-2): 95-110. |
24 | SCARCELLI J J, HONE M, BEAL K, et al.. Analytical subcloning of a clonal cell line demonstrates cellular heterogeneity that does not impact process consistency or robustness[J]. Biotechnol. Prog., 2018, 34(3): 602-612. |
25 | ARBEITHUBER B, HESTER J, CREMONA M A, et al.. Age-related accumulation of de novo mitochondrial mutations in mammalian oocytes and somatic tissues[J/OL]. PLoS Biol., 2020, 18(7): e3000745[2023-02-14]. . |
26 | SOHN S H, CHO E J, JANG I S. Cytogenetic characteristics of Chinese Hamster ovarian cell CHO-K1[J]. Reprod Dev Biol.,2006, 30: 263-270. |
27 | VCELAR S, JADHAV V, MELCHER M, et al.. Karyotype variation of CHO host cell lines over time in culture characterized by chromosome counting and chromosome painting[J]. Biotechnol. Bioeng., 2018, 115(1): 165-173. |
28 | SRIRANGAN K, LOIGNON M, DUROCHER Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster Ovary cells: retrospective analysis and future directions[J]. Crit. Rev. Biotechnol., 2020, 40(6): 833-851. |
29 | WURM F, WURM M. Cloning of CHO cells, productivity and genetic stability-discussion[J/OL]. Processes, 2017, 5(2): 20[2023-03-29]. . |
30 | KIMURA S, OMASA T. Genome sequence comparison between Chinese Hamster Ovary (CHO) DG44 cells and mouse using end sequences of CHO BAC clones based on BAC-FISH results[J]. Cytotechnology, 2018, 70(5): 1399-1407. |
31 | SOMMEREGGER W, GILI A, STEROVSKY T, et al.. Powerful expression in Chinese Hamster Ovary cells using bacterial artificial chromosomes: parameters influencing productivity[J]. BMC Proc., 2013, 7(6): 1-2. |
32 | XU N, MA C, OU J, et al.. Comparative proteomic analysis of three Chinese Hamster Ovary (CHO) host cells[J]. Biochem. Eng. J., 2017, 124: 122-129. |
33 | PECCI A, MA X, SAVOIA A, et al.. MYH9: Structure, functions and role of non-muscle myosin ⅡA in human disease[J]. Gene, 2018, 664: 152-167. |
34 | REINHART D, DAMJANOVIC L, KAISERMAYER C, et al.. Bioprocessing of recombinant CHO-K 1, CHO-DG44, and CHO-S: CHO expression hosts favor either MAb production or biomass synthesis[J/OL]. Biotechnol. J., 2019, 14(3): e1700686[2023-02-16]. . |
35 | VALLA M, OPDAHL S, YTTERHUS B, et al.. DTX3 copy number increase in breast cancer: a study of associations to molecular subtype, proliferation and prognosis[J]. Breast Cancer Res. Treat., 2021, 187(1): 57-67. |
36 | HU Z, GUO D, YIP S S M, et al.. Chinese Hamster Ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11-derived dihydrofolate reductase deficient host cell[J]. Biotechnol. Prog., 2013, 29(4): 980-985. |
37 | FAN Y, SIMMEN T. Mechanistic connections between endoplasmic reticulum (ER) redox control and mitochondrial metabolism[J/OL]. Cells, 2019, 8(9): 1071[2023-04-18]. . |
38 | CSORDÁS G, WEAVER D, HAJNÓCZKY G. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions[J]. Trends Cell Biol., 2018, 28(7): 523-540. |
39 | HETZ C, ZHANG K, KAUFMAN R J. Mechanisms, regulation and functions of the unfolded protein response[J]. Nat. Rev. Mol. Cell Biol., 2020, 21(8): 421-438. |
40 | PAN X, DALM C, WIJFFELS R H, et al.. Metabolic characterization of a CHO cell size increase phase in fed-batch cultures[J]. Appl. Microbiol. Biotechnol., 2017, 101(22): 8101-8113. |
41 | BUCHANAN A, CLEMENTEL V, WOODS R, et al.. Engineering a therapeutic IgG molecule to address cysteinylation, aggregation and enhance thermal stability and expression[J]. mAbs, 2013, 5(2): 255-262. |
42 | GARBER E, DEMAREST S J. A broad range of Fab stabilities within a host of therapeutic IgGs[J]. Biochem. Biophys. Res. Commun., 2007, 355(3): 751-757. |
43 | SHEN Y, ZENG L, ZHU A, et al.. Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity[J]. mAbs, 2013, 5(3): 418-431. |
44 | KUANG B, DHARA V G, HOANG D, et al.. Identification of novel inhibitory metabolites and impact verification on growth and protein synthesis in mammalian cells[J/OL]. Metab. Eng. Commun., 2021, 13: e00182[2023-04-06]. . |
45 | REINHART D, DAMJANOVIC L, SOMMEREGGER W, et al.. Influence of cell culture media and feed supplements on cell metabolism and quality of IgG produced in CHO-K1, CHO-S, and CHO-DG44[J]. BMC Proc., 2015, 9(9): P36[2023-03-06]. . |
46 | EHRET J, ZIMMERMANN M, EICHHORN T, et al.. Impact of cell culture media additives on IgG glycosylation produced in Chinese Hamster Ovary cells[J]. Biotechnol. Bioeng., 2019, 116(4): 816-830. |
47 | HOSSLER P, RACICOT C, CHUMSAE C, et al.. Cell culture media supplementation of infrequently used sugars for the targeted shifting of protein glycosylation profiles[J]. Biotechnol. Prog., 2017, 33(2): 511-522. |
48 | LAKSHMANAN M, KOK Y J, LEE A P, et al.. Multi-omics profiling of CHO parental hosts reveals cell line-specific variations in bioprocessing traits[J]. Biotechnol. Bioeng., 2019, 116(9): 2117-2129. |
49 | 江一帆, 贾宇, 王龙, 等. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103. |
50 | SHA S, AGARABI C, BRORSON K, et al.. N-glycosylation design and control of therapeutic monoclonal antibodies[J]. Trends Biotechnol., 2016, 34(10): 835-846. |
51 | BOUNE S, HU P, EPSTEIN A L, et al.. Principles of N-linked glycosylation variations of IgG-based therapeutics: pharmacokinetic and functional considerations[J/OL]. Antibodies, 2020, 9(2): 22[2022-02-18]. . |
52 | XU X, NAGARAJAN H, LEWIS N E, et al.. The genomic sequence of the Chinese Hamster Ovary (CHO)-K1 cell line[J]. Nat. Biotechnol., 2011, 29(8): 735-741. |
53 | LEE J S, KALLEHAUGE T B, PEDERSEN L E, et al.. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway[J/OL]. Sci. Rep., 2015, 5: 8572[2023-04-06]. . |
54 | 瞿丽丽, 丁学峰, 蔡燕飞, 等. CHO细胞基因组NW-003614092.1内稳定表达位点的发现[J]. 中国生物工程杂志, 2022, 42(6): 12-19. |
55 | O'BRIEN S A, OJHA J, WU P, et al.. Multiplexed clonality verification of cell lines for protein biologic production[J/OL]. Biotechnol. J., 2020, 36(4): e2978[2022-12-06]. . |
56 | CHUSAINOW J, YANG Y S, YEO J H M, et al.. A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer?[J]. Biotechnol. Bioeng., 2009, 102(4): 1182-1196. |
57 | ZEH N, SCHLOSSBAUER P, RAAB N, et al.. Cell line development for continuous high cell density biomanufacturing: exploiting hypoxia for improved productivity[J/OL]. Metab. Eng. Commun., 2021, 13: e00181[2023-03-06]. . |
58 | LIU L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins[J]. J. Pharm. Sci., 2015, 104(6): 1866-1884. |
59 | 王欢, 牛昆, 江一帆, 等. 重组单克隆抗体电荷异质性和工艺调控[J]. 生物技术进展, 2020, 10(5): 456-462. |
[1] | 杜凯, 张卓玲, 高莉, 何海华, 李婷华, 饶微. 抗独特型抗体在半抗原免疫检测中的应用[J]. 生物技术进展, 2023, 13(5): 690-697. |
[2] | 李永超, 杨昭. 双特异抗体药物研发现状及发展对策[J]. 生物技术进展, 2023, 13(3): 353-358. |
[3] | 曹丽, 罗顺, 邢世海, 仇金树, 蔺智勇, 林军, 孟旭, 刘峰. 山药提取物对CHO细胞生长及抗体表达的影响[J]. 生物技术进展, 2023, 13(3): 449-456. |
[4] | 彭晓燕, 陆盼盼, 胡祖权. 新型冠状病毒RBD蛋白原核表达及多克隆抗体的制备[J]. 生物技术进展, 2023, 13(1): 102-106. |
[5] | 王海宁, 刘兴健, 高新桃, 李轶女, 沈兴家, 张志芳, 易咏竹. SARS-CoV-2中和性纳米抗体的原核表达及中和活性检测[J]. 生物技术进展, 2022, 12(5): 754-759. |
[6] | 杨懿祺, 张志高, 游小龙, 张婧, 林冠峰, 吴英松. 抗体药物的发展与应用[J]. 生物技术进展, 2022, 12(3): 358-365. |
[7] | 袁启锋,姚宝珍. 谷氨酸-谷氨酰胺循环异常与孤独症谱系障碍研究进展[J]. 生物技术进展, 2021, 11(2): 170-175. |
[8] | 张博慧,贾戴辉,程倩,许俊彦,邵喆,黄应峰. 利用N糖苷酶F对单克隆抗体N糖酶解条件的优化[J]. 生物技术进展, 2021, 11(2): 214-222. |
[9] | 杨高松,马东杰. 呼吸道传染病治疗中抗体药物的研发进展[J]. 生物技术进展, 2020, 10(5): 441-447. |
[10] | 王欢,牛昆,江一帆,董静. 重组单克隆抗体电荷异质性和工艺调控[J]. 生物技术进展, 2020, 10(5): 456-462. |
[11] | 卞论,林冠峰,吴英松. 抗狂犬病毒中和抗体研究进展[J]. 生物技术进展, 2020, 10(4): 339-344. |
[12] | 张晓茹,张明英,刘怡宁,付莉霞,邢文,周圆. 抗体滴定在血液细胞流式细胞术中的应用[J]. 生物技术进展, 2020, 10(3): 284-291. |
[13] | 孙静娟,邱景璇,曾海娟,丁承超,王广彬,李杰,王淑娟,刘箐. 单增李斯特菌prsA1基因的截短表达、纯化及多克隆抗体的制备[J]. 生物技术进展, 2018, 8(3): 254-260. |
[14] | 张斌,刘晓志,周敬华,魏敬双,高健,王志明. 抗体药物糖化检测方法及其生物学功能研究进展[J]. 生物技术进展, 2018, 8(1): 28-33. |
[15] | 郑惠惠,江洪. CHO细胞表达系统研究进展[J]. 生物技术进展, 2016, 6(4): 239-243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部