[1] |
SABLE H J K, MERCED-NIEVES F M, MEYER J S. Introduction to "effects of per- and polyfluoroalkyl substances (PFAS) within a developmental context"[J/OL]. Neurotoxicol. Teratol., 2024, 104: 107372[2025-06-25]. .
|
[2] |
PANIERI E, BARALIC K, DJUKIC-COSIC D, et al.. PFAS molecules: a major concern for the human health and the environment[J/OL]. Toxics, 2022, 10(2): 44[2025-06-25]. .
|
[3] |
SSEBUGERE P, SILLANPÄÄ M, MATOVU H, et al.. Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: a critical review[J/OL]. Sci. Total Environ., 2020, 739: 139913[2025-06-25]. .
|
[4] |
TAIBL K R, SCHANTZ S, AUNG M T, et al.. Associations of per- and polyfluoroalkyl substances (PFAS) and their mixture with oxidative stress biomarkers during pregnancy[J/OL]. Environ. Int., 2022, 169: 107541[2025-06-25]. .
|
[5] |
LIU L, YAN P, LIU X, et al.. Profiles and transplacental transfer of per- and polyfluoroalkyl substances in maternal and umbilical cord blood: a birth cohort study in Zhoushan, Zhejiang Province, China[J/OL]. J. Hazard. Mater., 2024, 466: 133501[2025-06-25]. .
|
[6] |
GOMIS M I, VESTERGREN R, BORG D, et al.. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives[J]. Environ. Int., 2018, 113: 1-9.
|
[7] |
ZHANG B, WEI Z, GU C, et al.. First evidence of prenatal exposure to emerging poly- and perfluoroalkyl substances associated with E-waste dismantling: chemical structure-based placental transfer and health risks[J]. Environ. Sci. Technol., 2022, 56(23): 17108-17118.
|
[8] |
GAO K, ZHUANG T, LIU X, et al.. Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) and association between the placental transfer efficiencies and dissociation constant of serum proteins-PFAS complexes[J]. Environ. Sci. Technol., 2019, 53(11): 6529-6538.
|
[9] |
ALAM M S, ABBASI A, CHEN G. Fate, distribution, and transport dynamics of per- and polyfluoroalkyl substances (PFASs) in the environment[J/OL]. J. Environ. Manage., 2024, 371: 123163[2025-06-25]. .
|
[10] |
MA D, LU Y, LIANG Y, et al.. A critical review on transplacental transfer of per- and polyfluoroalkyl substances: prenatal exposure levels, characteristics, and mechanisms[J]. Environ. Sci. Technol., 2022, 56(10): 6014-6026.
|
[11] |
ZHENG G, SCHREDER E, DEMPSEY J C, et al.. Per- and polyfluoroalkyl substances (PFAS) in breast milk: concerning trends for current-use PFAS[J]. Environ. Sci. Technol., 2021, 55(11): 7510-7520.
|
[12] |
ABRAHAM K, MIELKE H, FROMME H, et al.. Internal exposure to perfluoroalkyl substances (PFASs) and biological markers in 101 healthy 1-year-old children: associations between levels of perfluorooctanoic acid (PFOA) and vaccine response[J]. Arch. Toxicol., 2020, 94(6): 2131-2147.
|
[13] |
SERRANO L, IRIBARNE-DURÁN L M, SUÁREZ B, et al.. Concentrations of perfluoroalkyl substances in donor breast milk in Southern Spain and their potential determinants[J/OL]. Int. J. Hyg. Environ. Health, 2021, 236: 113796[2025-06-25]. .
|
[14] |
MARIUSSEN E. Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance[J]. Arch. Toxicol., 2012, 86(9): 1349-1367.
|
[15] |
BALLESTEROS V, COSTA O, IÑIGUEZ C, et al.. Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: a systematic review of epidemiologic studies[J]. Environ. Int., 2017, 99: 15-28.
|
[16] |
KATO S, ITOH S, YUASA M, et al.. Association of perfluorinated chemical exposure in utero with maternal and infant thyroid hormone levels in the sapporo cohort of hokkaido study on the environment and children's health[J]. Environ. Health Prev. Med., 2016, 21(5): 334-344.
|
[17] |
REARDON A J F, KHODAYARI MOEZ E, DINU I, et al.. Longitudinal analysis reveals early-pregnancy associations between perfluoroalkyl sulfonates and thyroid hormone status in a Canadian prospective birth cohort[J]. Environ. Int., 2019, 129: 389-399.
|
[18] |
ZHANG L, LIANG J, GAO A. Contact to perfluoroalkyl substances and thyroid health effects: a meta-analysis directing on pregnancy[J/OL]. Chemosphere, 2023, 315: 137748[2025-06-25]. .
|
[19] |
MARCHESE M J, LI S, LIU B, et al.. Perfluoroalkyl substance exposure and the BDNF pathway in the placental trophoblast[J/OL]. Front. Endocrinol., 2021, 12: 694885[2025-06-25]. .
|
[20] |
NUMAKAWA T, KAJIHARA R. The role of brain-derived neurotrophic factor as an essential mediator in neuronal functions and the therapeutic potential of its mimetics for neuroprotection in neurologic and psychiatric disorders[J/OL]. Molecules, 2025,30(4): 848[2025-07-29]. .
|
[21] |
BOERSMA G J, LEE R S, CORDNER Z A, et al.. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon Ⅳ in rats[J]. Epigenetics, 2014, 9(3): 437-447.
|
[22] |
WAN IBRAHIM W N, TOFIGHI R, ONISHCHENKO N, et al.. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo [J]. Toxicol. Appl. Pharmacol., 2013, 269(1): 51-60.
|
[23] |
LI Z, LIU Q, LIU C, et al.. Evaluation of PFOS-mediated neurotoxicity in rat primary neurons and astrocytes cultured separately or in co-culture[J]. Toxicol. Vitro, 2017, 38: 77-90.
|
[24] |
LIU X, JIN Y, LIU W, et al.. Possible mechanism of perfluorooctane sulfonate and perfluorooctanoate on the release of calcium ion from calcium stores in primary cultures of rat hippocampal neurons[J]. Toxicol. in Vitro, 2011, 25(7): 1294-1301.
|
[25] |
JOHANSSON N, ERIKSSON P, VIBERG H. Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain[J]. Toxicol. Sci., 2009, 108(2): 412-418.
|
[26] |
GUO X X, HE Q Z, LI W, et al.. Brain-derived neurotrophic factor mediated perfluorooctane sulfonate induced-neurotoxicity via epigenetics regulation in SK-N-SH cells[J/OL]. Int. J. Mol. Sci., 2017, 18(4): 893[2025-06-25]. .
|
[27] |
KIM S, STROSKI K M, KILLEEN G, et al.. 8: 8 Perfluoroalkyl phosphinic acid affects neurobehavioral development, disruptionthyroid, and DNA methylation in developing zebrafish[J/OL]. Sci. Total Environ., 2020, 736: 139600[2025-06-25]. .
|
[28] |
PETROFF R L, CAVALCANTE R G, LANGEN E S, et al.. Mediation effects of DNA methylation and hydroxymethylation on birth outcomes after prenatal per- and polyfluoroalkyl substances (PFAS) exposure in the Michigan mother-infant Pairs cohort[J/OL]. Clin. Epigenetics, 2023, 15(1): 49[2025-06-25]. .
|
[29] |
SLOTKIN T A, MACKILLOP E A, MELNICK R L, et al.. Developmental neurotoxicity of perfluorinated chemicals modeled in vitro [J]. Environ. Health Perspect., 2008, 116(6): 716-722.
|
[30] |
HALLGREN S, FREDRIKSSON A, VIBERG H. More signs of neurotoxicity of surfactants and flame retardants-neonatal PFOS and PBDE 99 cause transcriptional alterations in cholinergic genes in the mouse CNS[J]. Environ. Toxicol. Pharmacol., 2015, 40(2): 409-416.
|
[31] |
PATEL R, BRADNER J M, STOUT K A, et al.. Alteration to dopaminergic synapses following exposure to perfluorooctane sulfonate (PFOS), in vitro and in vivo[J/OL]. Med. Sci., 2016, 4(3): 13[2025-07-29]. .
|
[32] |
SPULBER S, KILIAN P, WAN IBRAHIM W N, et al.. PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae[J/OL]. PLoS ONE, 2014, 9(4): e94227[2025-06-25]. .
|
[33] |
CHEN N, LI J, LI D, et al.. Chronic exposure to perfluorooctane sulfonate induces behavior defects and neurotoxicity through oxidative damages, in vivo and in vitro [J/OL]. PLoS ONE, 2014, 9(11): e113453[2025-06-25]. .
|
[34] |
KIM M J, MOON S, COH B, et al.. Association between perfluoroalkyl substances exposure and thyroid function in adults: a meta-analysis[J/OL]. PLoS ONE, 2018, 13(5): e0197244[2025-06-25]. .
|
[35] |
HESHMATI J, MORVARIDZADEH M, MAROUFIZADEH S, et al.. Omega-3 fatty acids supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials[J/OL]. Pharmacol. Res., 2019, 149: 104462[2025-06-25]. .
|
[36] |
STARNES H M, ROCK K D, JACKSON T W, et al.. A critical review and meta-analysis of impacts of per- and polyfluorinated substances on the brain and behavior[J/OL]. Front. Toxicol., 2022, 4: 881584[2025-06-25]. .
|
[37] |
TÓTH D M, SZERI F, ASHABER M, et al.. Tissue-specific roles of de novo DNA methyltransferases[J/OL]. Epigenetics Chromatin, 2025, 18(1): 5[2025-06-25]. .
|
[38] |
ZHOU G, VRUSNAC D, PARK H, et al.. An artificial intelligence accelerated virtual screening platform for drug discovery[J/OL]. Nat. Commun., 2024, 15(1): 7761[2025-06-25]. .
|
[39] |
XIAO F, CHALLA SASI P, ALINEZHAD A, et al.. Thermal phase transition and rapid degradation of forever chemicals (PFAS) in spent media using induction heating[J]. ACS Eng., 2023, 3(9): 1370-1380.
|
[40] |
XIE Z, LIANG H, MIAO M, et al.. Prenatal exposure to perfluoroalkyl substances and cognitive and neurobehavioral development in children at 6 years of age[J]. Environ. Sci. Technol., 2023, 57(22): 8213-8224.
|