[1] |
MARGOLIN E, CRISPIN M, MEYERS A, et al.. A roadmap for the molecular farming of viral glycoprotein vaccines: engineering glycosylation and glycosylation-directed folding[J/OL]. Front. Plant Sci., 2020, 11: 609207[2025-03-25]. .
|
[2] |
BARTA A, SOMMERGRUBER K, THOMPSON D, et al.. The expression of a nopaline synthase: human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue[J]. Plant Mol. Biol., 1986, 6(5): 347-357.
|
[3] |
HIATT A, CAFFERKEY R, BOWDISH K. Production of antibodies in transgenic plants[J]. Nature, 1989, 342(6245): 76-78.
|
[4] |
MOLONEY M, GOFF S, MEEHAN J, et al.. Production of human clotting factor IX in transgenic tobacco plants[J]. Biol. Technol., 1990, 8: 927-931.
|
[5] |
刘亚, 李敬娜, 任雯, 等. 植物遗传转化表达载体研究进展[J]. 生物技术进展, 2011, 1(1): 14-20.
|
|
LIU Y, LI J N, REN W, et al.. Progress on expression vector for plant genetic transformation[J]. Curr. Biotechnol., 2011, 1(1): 14-20.
|
[6] |
SAMULSKI R J, BERNS K I, TAN M, et al.. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells[J]. Proc. Natl. Acad. Sci. USA, 1982, 79(6): 2077-2081.
|
[7] |
王安琪, 朱华新, 赵翔, 等. 基于纳米基因载体的动植物遗传转化研究进展[J]. 生物技术进展, 2018, 8(4): 293-301.
|
|
WANG A Q, ZHU H X, ZHAO X, et al.. Progress on genetic transformation of animals and plants based on nanogene vector[J]. Curr. Biotechnol., 2018, 8(4): 293-301.
|
[8] |
CAO X, XIE H, SONG M, et al.. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture[J/OL]. Innovation, 2023, 4(1): 100345[2025-03-25]. .
|
[9] |
CAO X, XIE H, SONG M, et al.. Extremely simplified cut-dip-budding method for genetic transformation and gene editing in Taraxacum kok-saghyz [J/OL]. Innov. Life, 2023, 1(3): 100040[2025-03-25]. .
|
[10] |
丁一, 魏际华, 张宁, 等. 水稻胚乳细胞生物反应器研究进展[J]. 中国稻米, 2017, 23(3): 6-12.
|
|
DING Y, WEI J H, ZHANG N, et al.. Progress on rice endosperm cells as a bioreactor[J]. China Rice, 2017, 23(3): 6-12.
|
[11] |
曲勍, 李校堃, 于雅琴. 利用油体表达系统生产外源重组蛋白[J]. 中国生物工程杂志, 2007, 27(8): 111-115.
|
|
QU Q, LI X K, YU Y Q. Development on plant seed oil body expression system for recombinant proteins production[J]. China Biotechnol., 2007, 27(8): 111-115.
|
[12] |
周菲, 路史展, 高亮, 等. 植物质体基因工程:新的优化策略及应用[J]. 遗传, 2015, 37(8): 777-792.
|
|
ZHOU F, LU S Z, GAO L, et al.. Plastid genome engineering: novel optimization strategies and applications[J]. Hereditas, 2015, 37(8): 777-792.
|
[13] |
赵艳, 唐湧洲, 史玉倩. 水稻种子特异性谷蛋白GluB1启动子在水稻愈伤组织中驱动外源基因表达[J]. 中国水稻科学,2019, 33: 28-34.
|
[14] |
ZAHMANOVA G, ALJABALI A A A, TAKOVA K, et al.. Green biologics: harnessing the power of plants to produce pharmaceuticals[J/OL]. Int. J. Mol. Sci., 2023, 24(24): 17575[2025-03-25]. .
|
[15] |
KHEIRVARI M, LIU H, TUMBAN E. Virus-like particle vaccines and platforms for vaccine development[J/OL]. Viruses, 2023, 15(5): 1109[2025-03-25]. .
|
[16] |
SU Y L, LARZÁBAL M, SONG H, et al.. Enterohemorrhagic Escherichia coli O157: H7 antigens produced in transgenic lettuce effective as an oral vaccine in mice[J/OL]. Theor. Appl. Genet., 2023, 136(10): 214[2025-03-25]. .
|
[17] |
SABA-MAYORAL A, ROSA C, SOBRINO-MENGUAL G, et al.. Production of the SARS-CoV-2 receptor-binding domain in stably transformed rice plants for developing country applications[J]. Plant Biotechnol. J., 2023, 21(6): 1094-1096.
|
[18] |
MA F, XU Q, WANG A, et al.. A universal design of restructured dimer antigens: development of a superior vaccine against the paramyxovirus in transgenic rice[J/OL]. Proc. Natl. Acad. Sci. USA, 2024, 121(4): e2305745121[2025-03-25]. .
|
[19] |
ZAHMANOVA G, TAKOVA K, VALKOVA R, et al.. Plant-derived recombinant vaccines against zoonotic viruses[J/OL]. Life, 2022, 12(2): 156[2025-03-25]. .
|
[20] |
PALLESEN J, MURIN C D, DE VAL N, et al.. Structures of Ebola virus GP and sGP in complex with therapeutic antibodies[J/OL]. Nat. Microbiol., 2016, 1(9): 16128[2025-03-25]. .
|
[21] |
SACK M, RADEMACHER T, SPIEGEL H, et al.. From gene to harvest: insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants[J]. Plant Biotechnol. J., 2015, 13(8): 1094-1105.
|
[22] |
DIAMOS A G, HUNTER J G L, PARDHE M D, et al.. High level production of monoclonal antibodies using an optimized plant expression system[J/OL]. Front. Bioeng. Biotechnol., 2019, 7: 472[2025-03-25]. .
|
[23] |
吴梦婷, 王海涛, 张淼, 等. 利用植物质体转基因技术高效表达抗人源白介素6单链抗体[J]. 生物工程学报, 2022, 38(6): 2269-2280.
|
|
WU M T, WANG H T, ZHANG M, et al.. High-level expression of anti-interleukin-6 single chain variable fragment through plastid transformation technology[J]. Chin. J. Biotechnol., 2022, 38(6): 2269-2280.
|
[24] |
SUN H, JUGLER C, NGUYEN K, et al.. The potency and synergy of plant-made monoclonal antibodies against the BA.5 variant of SARS-CoV-2[J]. Plant Biotechnol. J., 2023, 21(3): 463-465.
|
[25] |
HE Y, NING T, XIE T, et al.. Large-scale production of functional human serum albumin from transgenic rice seeds[J]. Proc. Natl. Acad. Sci. USA, 2011, 108(47): 19078-19083.
|
[26] |
TEKOAH Y, TZABAN S, KIZHNER T, et al.. Glycosylation and functionality of recombinant β-glucocerebrosidase from various production systems[J/OL]. Biosci. Rep., 2013, 33(5): e00071[2025-03-25]. .
|
[27] |
DANIELL H, SINGH R, MANGU V, et al.. Affordable oral proinsulin bioencapsulated in plant cells regulates blood sugar levels similar to natural insulin[J/OL]. Biomaterials, 2023, 298: 122142[2025-03-25]. .
|
[28] |
ZHAO L, ZHU Y, JIA H, et al.. From plant to yeast-advances in biosynthesis of artemisinin[J/OL]. Molecules, 2022, 27(20): 6888[2025-03-25]. .
|
[29] |
REED J, ORME A, EL-DEMERDASH A, et al.. Elucidation of the pathway for biosynthesis of saponin adjuvants from the soapbark tree[J]. Science, 2023, 379(6638): 1252-1264.
|
[30] |
NETT R S, LAU W, SATTELY E S. Discovery and engineering of colchicine alkaloid biosynthesis[J]. Nature, 2020, 584(7819): 148-153.
|
[31] |
LIU J C, DE LA PEÑA R, TOCOL C, et al.. Reconstitution of early paclitaxel biosynthetic network[J/OL]. Nat. Commun., 2024, 15: 1419[2025-03-25]. .
|
[32] |
ZIEGELHOFFER T, WILL J, AUSTIN-PHILLIPS S. Expression of bacterial cellulase genes in transgenic alfalfa (Medicago sativa L.), potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.)[J]. Mol. Breed., 1999, 5(4):309-318.
|
[33] |
BOHMERT-TATAREV K, MCAVOY S, DAUGHTRY S, et al.. High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate[J]. Plant Physiol., 2011, 155(4):1690-1708.
|
[34] |
ABID N, KHATOON A, MAQBOOL A, et al.. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains[J]. Transgenic Res., 2017, 26(1):109-122.
|
[35] |
Biotechnology Syngenta, Inc.. Determination of nonregulated status for corn genetically engineered for α-amylase production[EB]. Federal Register, 2011-02-11, 76(29): 8087-8088.
|
[36] |
黄耀辉, 王艺洁, 杨立桃, 等. 生物育种新技术作物的安全管理[J]. 生物技术进展, 2022, 12(2): 198-204.
|
|
HUANG Y H, WANG Y J, YANG L T, et al.. Safety management of the crop produced by new breeding techniques[J]. Curr. Biotechnol., 2022, 12(2): 198-204.
|
[37] |
王静, 杨艳萍. 主要国家新型植物育种技术监管现状综述[J]. 中国农业科技导报, 2019, 21(5): 1-7.
|
|
WANG J, YANG Y P. Review on supervision current situation of new plant breeding techniques regulatory in major countries[J]. J. Agric. Sci. Technol., 2019, 21(5): 1-7.
|
[38] |
杨艳萍, 董瑜, 邢颖, 等. 欧盟新型植物育种技术的研究及监管现状[J]. 生物技术通报, 2016(2): 1-6.
|
|
YANG Y P, DONG Y, XING Y, et al.. The research and regulatory status of novel plant breeding techniques in Europe[J]. Biotechnol. Bull., 2016(2): 1-6.
|
[39] |
王国义, 贺晓云, 许文涛, 等. 转基因植物食用安全性评估与监管研究进展[J]. 食品科学, 2019, 40(11): 343-350.
|
|
WANG G Y, HE X Y, XU W T, et al.. Recent progress in food safety assessment and regulation of genetically modified plants[J]. Food Sci., 2019, 40(11): 343-350.
|
[40] |
李红杰, 贾亚男, 张彦军, 等. 国内外转基因与基因编辑作物监管现状[J]. 中国农业大学学报, 2023, 28(9): 1-11.
|
|
LI H J, JIA Y N, ZHANG Y J, et al.. Regulatory status of GM and gene-edited crops at domestic and abroad[J]. J. China Agric. Univ., 2023, 28(9): 1-11.
|