1 |
ZHOU J, HE H, ZHANG J J, et al.. ATG7-mediated autophagy facilitates embryonic stem cell exit from naive pluripotency and marks commitment to differentiation[J]. Autophagy, 2022, 18(12): 2946-2968.
|
2 |
ROSE B A, SIEBE V G, LI Q, et al.. Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates[J/OL]. EMBO J., 2021,40(9): e104913[2025-02-25]..
|
3 |
GRIFFERO M, BENEDETTI A F F, PÉREZ M, et al.. Novel OTX2 loss of function variant associated with congenital hypopituitarism without eye abnormalities[J]. J. Pediatr. Endocrinol. Metab., 2022, 35(6): 831-835.
|
4 |
CELSE T, TINGAUD-SEQUEIRA A, DIETERICH K, et al.. OTX2 duplications: a recurrent cause of oculo-auriculo-vertebral spectrum[J]. J. Med. Genet., 2023, 60(6): 620-626.
|
5 |
CHEE J M, LANOUE L, CLARY D, et al.. Genome-wide screening reveals the genetic basis of mammalian embryonic eye development[J/OL]. BMC Biol., 2023, 21(1): 22[2024-12-15]. .
|
6 |
TORERO I R, MAZHAR B, VINCENT C, et al.. OTX2 non-cell autonomous activity regulates inner retinal function[J/OL]. eNeuro, 2020, 7(5): ENEURO.0012-19.2020[2024-12-15]. .
|
7 |
MATSUMOTO R, SUGA H, AOI T, et al.. Congenital pituitary hypoplasia model demonstrates hypothalamic OTX2 regulation of pituitary progenitor cells[J]. J. Clin. Invest., 2020, 130(2): 641-654.
|
8 |
MARGUERON R, REINBERG D. The polycomb complex PRC2 and its mark in life[J]. Nature, 2011, 469(7330): 343-349.
|
9 |
LIU X, WANG C, LIU W, et al.. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos[J]. Nature, 2016, 537(7621): 558-562.
|
10 |
ZENK F, FLECK J S, JANSEN S M J, et al.. Single-cell epigenomic reconstruction of developmental trajectories from pluripotency in human neural organoid systems[J]. Nat. Neurosci., 2024, 27(7): 1376-1386.
|
11 |
LI X, JI G, ZHOU J, et al.. Pcgf1 regulates early neural tube development through histone methylation in zebrafish[J/OL]. Front. Cell Dev. Biol., 2020, 8: 581636[2024-12-15]. .
|
12 |
SCHEVENELS G, CABOCHETTE P, AMERICA M, et al.. A brain-specific angiogenic mechanism enabled by tip cell specialization[J]. Nature, 2024, 628(8009): 863-871.
|
13 |
POWELL G T, FARO A, ZHAO Y, et al.. Cachd1 interacts with Wnt receptors and regulates neuronal asymmetry in the zebrafish brain[J]. Science, 2024, 384(6695): 573-579.
|
14 |
QIAN X, SU Y, ADAM C D, et al.. Sliced human cortical organoids for modeling distinct cortical layer formation[J]. Cell Stem Cell, 2020, 26(5): 766-781.
|
15 |
方靖靖,黄昆仑,仝涛.孤独症谱系障碍实验模型研究进展[J].生物技术进展,2023,13(4):509-523.
|
|
FANG J J, HUANG K L, TONG T. Research progress on experimental models of autism spectrum disorders[J]. Curr. Biotechnol., 2023, 13(4): 509-523.
|
16 |
SMITH-GEATER C, HERNANDEZ S J, LIM R G, et al.. Aberrant development corrected in adult-onset Huntington's disease iPSC-derived neuronal cultures via WNT signaling modulation[J]. Stem Cell Rep., 2020, 14(3): 406-419.
|
17 |
GIBBS H C, CHANG-GONZALEZ A, HWANG W, et al.. Midbrain-hindbrain boundary morphogenesis: at the intersection of Wnt and fgf signaling[J/OL]. Front. Neuroanat., 2017, 11: 64[2024-12-15]. .
|
18 |
HU L, CHENG Z, WU L, et al.. Histone methyltransferase SETDB1 promotes osteogenic differentiation in osteoporosis by activating OTX2-mediated BMP-Smad and Wnt/β-catenin pathways[J]. Hum. Cell, 2023, 36(4): 1373-1388.
|
19 |
张佳聪,鲁纪刚.基于CRISPR/Cas9系统建立新吉富罗非鱼双等位基因敲除技术:以SLC24A5基因为例[J].生物技术进展,2024,14(3):442-450.
|
|
ZHANG J C, LU J G. Establishment of biallelic knockout technique in Nile Tilapia(Oreochromis niloticus)based on CRISPR/Cas9 system: a case study of SLC24A5 gene[J]. Curr. Biotechnol., 2024, 14(3): 442-450.
|
20 |
高维崧,窦金萍,韦双,等.CRISPR/Cas系统的分类及研究现状[J].生物技术进展,2022,12(4):532-538.
|
|
GAO W S, DOU J P, WEI S, et al.. Classification and research status of CRISPR/cas systems[J]. Curr. Biotechnol., 2022, 12(4): 532-538.
|
21 |
CONIO B, MARTINO M, MAGIONCALDA P, et al.. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders[J]. Mol. Psychiatry, 2020, 25(1): 82-93.
|