生物技术进展 ›› 2024, Vol. 14 ›› Issue (6): 902-910.DOI: 10.19586/j.2095-2341.2024.0122
唐桂容(), 刘建雨, 于海龙, 宋春艳, 谭琦, 尚晓冬(
)
收稿日期:
2024-07-02
接受日期:
2024-08-14
出版日期:
2024-11-25
发布日期:
2024-12-27
通讯作者:
尚晓冬
作者简介:
唐桂容E-mail: grtang@saas.sh.cn;
基金资助:
Guirong TANG(), Jianyu LIU, Hailong YU, Chunyan SONG, Qi TAN, Xiaodong SHANG(
)
Received:
2024-07-02
Accepted:
2024-08-14
Online:
2024-11-25
Published:
2024-12-27
Contact:
Xiaodong SHANG
摘要:
金针菇(Flammulina filiformis)是一种著名的药食两用真菌,具有良好的开发应用前景。高效稳定的遗传转化体系是其进行基因功能研究的关键技术。农杆菌介导的转基因方法是目前金针菇遗传转化的重要方法之一。系统综述了转化受体、农杆菌菌株、双元载体、乙酰丁香酮和共培养时间等因素对金针菇遗传转化效率的影响,总结了农杆菌介导的转化技术在金针菇基因功能研究中的应用进展,并就该技术存在的问题和应用前景作简单的探讨,以期为今后建立高效的农杆菌介导的金针菇遗传转化系统提供参考。
中图分类号:
唐桂容, 刘建雨, 于海龙, 宋春艳, 谭琦, 尚晓冬. 根癌农杆菌介导的金针菇遗传转化研究进展[J]. 生物技术进展, 2024, 14(6): 902-910.
Guirong TANG, Jianyu LIU, Hailong YU, Chunyan SONG, Qi TAN, Xiaodong SHANG. Progress on Flammulina filiformis Transformation Mediated by Agrobacterium tumefaciens[J]. Current Biotechnology, 2024, 14(6): 902-910.
图1 根癌农杆菌介导金针菇的遗传转化流程注:Ⅰ—克隆载体的构建;Ⅱ—将载体转入根癌农杆菌;Ⅲ—培养已转入载体的根癌农杆菌;Ⅳ—农杆菌与受体共培养(以菌丝体为受体材料);Ⅴ—筛选阳性转化子;a—菌丝;b—菌褶;c—菌丝球;d—粉孢子;e—菌块。
Fig. 1 Schematic of the Agrobacterium tumefaciens-mediated transformation system of F. filimormis
基因名 | 功能 | 受体材料 | 根癌农杆菌 | 质粒 | 启动子 | 选择标记 | 参考文献 |
---|---|---|---|---|---|---|---|
FIP-fve | 调控菌丝生长 | LBA4404 | pCAMBIA1300 | F. velutipes gpd | Hyg | [ | |
Fv-ada | 调控菌丝生长 | 菌块 | LBA4404 | pFungiway | F. velutipes gpd | Hyg | [ |
FfCEL6B | 调控菌丝生长 | 菌块 | GV3101 | pCAMBIA1300 | GpdII | Hyg | [ |
FfGa1 | 调控菌丝生长 | 菌块 | GV3101 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
FfGS6 | 调控菌丝对外界胁迫与子实体生长 | 菌块 | GV3101 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
Pdd1 | 调节菌丝生长和子实体发育 | 菌丝球 | AGL-1 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
FFJMHY | 调控菌丝、菌柄生长 | 菌块 | AGL-1 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
Fvclp1 | 调节菌丝生长和子实体发育 | 菌丝球 | GV3101 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
FvHd1 | 调控锁状联合形成 | 菌块 | GV3101 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
FvCPC2 | 调节菌丝生长和子实体发育 | 菌丝球 | AGL-1 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
Fvhom1 | 调控菌丝生长 | 菌丝球 | GV3101 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
Hmg1 | 调节子实体生长速度 | 菌丝球 | GV3101 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
LFC1 | 调节子实体生长 | 菌丝球 | AGL-1 | A. bisporus gpd | Hyg | [ | |
FFMnSOD1 | 调控菌柄长度 | 菌丝球 | GV3101 | pBHg-eGFP | A. bisporus gpd | Hyg | [ |
FFMnSOD2 | 调控菌柄长度 | 菌丝球 | GV3101 | pBHg-eGFP | A. bisporus gpd | Hyg | [ |
FfNoxA | 调控菌柄长度 | 菌丝球 | GV3101 | pBHg-eGFP | A. bisporus gpd | Hyg | [ |
表1 调控金针菇菌丝和子实体发育的基因列表
Table 1 List of genes that regulate the development of mycelium and fruiting body in F. filiformis
基因名 | 功能 | 受体材料 | 根癌农杆菌 | 质粒 | 启动子 | 选择标记 | 参考文献 |
---|---|---|---|---|---|---|---|
FIP-fve | 调控菌丝生长 | LBA4404 | pCAMBIA1300 | F. velutipes gpd | Hyg | [ | |
Fv-ada | 调控菌丝生长 | 菌块 | LBA4404 | pFungiway | F. velutipes gpd | Hyg | [ |
FfCEL6B | 调控菌丝生长 | 菌块 | GV3101 | pCAMBIA1300 | GpdII | Hyg | [ |
FfGa1 | 调控菌丝生长 | 菌块 | GV3101 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
FfGS6 | 调控菌丝对外界胁迫与子实体生长 | 菌块 | GV3101 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
Pdd1 | 调节菌丝生长和子实体发育 | 菌丝球 | AGL-1 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
FFJMHY | 调控菌丝、菌柄生长 | 菌块 | AGL-1 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
Fvclp1 | 调节菌丝生长和子实体发育 | 菌丝球 | GV3101 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
FvHd1 | 调控锁状联合形成 | 菌块 | GV3101 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
FvCPC2 | 调节菌丝生长和子实体发育 | 菌丝球 | AGL-1 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
Fvhom1 | 调控菌丝生长 | 菌丝球 | GV3101 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
Hmg1 | 调节子实体生长速度 | 菌丝球 | GV3101 | pBHg-BCA1 | A. bisporus gpd | Hyg | [ |
LFC1 | 调节子实体生长 | 菌丝球 | AGL-1 | A. bisporus gpd | Hyg | [ | |
FFMnSOD1 | 调控菌柄长度 | 菌丝球 | GV3101 | pBHg-eGFP | A. bisporus gpd | Hyg | [ |
FFMnSOD2 | 调控菌柄长度 | 菌丝球 | GV3101 | pBHg-eGFP | A. bisporus gpd | Hyg | [ |
FfNoxA | 调控菌柄长度 | 菌丝球 | GV3101 | pBHg-eGFP | A. bisporus gpd | Hyg | [ |
1 | 葛再伟,刘晓斌,赵宽,等.冬菇属的新变种和中国新记录种[J].菌物学报,2015,34(4):589-603. |
GE Z W, LIU X B, ZHAO K, et al.. Species diversity of Flammulina in China: new varieties and a new record[J]. Mycosystema, 2015, 34(4): 589-603. | |
2 | WANG P M, LIU X B, DAI Y C, et al.. Phylogeny and species delimitation of Flammulina: taxonomic status of winter mushroom in East Asia and a new European species identified using an integrated approach[J]. Mycol. Prog., 2018, 17(9): 1013-1030. |
3 | 戴玉成,杨祝良.中国五种重要食用菌学名新注[J].菌物学报,2018,37(12):1572-1577. |
DAI Y C, YANG Z L. Notes on the nomenclature of five important edible fungi in China[J]. Mycosystema, 2018, 37(12): 1572-1577. | |
4 | MAHFUZ S, HE T F, MA J Y, et al. Mushroom stem residue on growth performance, meat quality, antioxidant status and lipid metabolism of broilers[J]. Ital. J. Anim. Sci., 2020, 19(1): 803-812. |
5 | 李晓,李玉.中国工厂化瓶栽白色金针菇竞品分析[J].中国食用菌,2014,33(2):20-24. |
LI X, LI Y. Quality comparison and analysis on white Flammulina velutipes grown with bottle lines in China[J]. Edible Fungi China, 2014, 33(2): 20-24. | |
6 | 刘询,刘天海,王波,等.金针菇分子生物学和功能基因研究进展[J].菌物学报,2023,42(1):130-142. |
LIU X, LIU T H, WANG B, et al.. Research progress of molecular biology and functional genes of Flammulina filiformis [J]. Mycosystema, 2023, 42(1): 130-142. | |
7 | MAEHARA T, YOSHIDA M, ITO Y, et al.. Development of a gene transfer system for the mycelia of Flammulina velutipes Fv-1 strain[J]. Biosci. Biotechnol. Biochem., 2010, 74(5): 1126-1128. |
8 | KIM J K, PARK Y J, KONG W S, et al.. Highly efficient electroporation-mediated transformation into edible mushroom Flammulina velutipes [J]. Mycobiology, 2010, 38(4): 331-335. |
9 | 刘建雨, 张美彦, 张丹, 等. 电击法转化金针菇菌丝碎片表达报告基因eGFP及GUS的研究[J]. 食用菌学报, 2018, 25(2): 23-28. |
LIU J Y, ZHANG M Y, ZHANG D, et al. Electroporation of mycelial fragments to express reporter genes eGFP and GUS in Flammulina velutipes [J]. Acta Edulis Fungi, 2018, 25(2):23-28. | |
10 | SHI L, CHEN D, XU C, et al.. Highly-efficient liposome-mediated transformation system for the basidiomycetous fungus Flammulina velutipes [J]. J. Gen. Appl. Microbiol., 2017, 63(3): 179-185. |
11 | LU Y P, CHEN R L, LONG Y, et al.. A jacalin-related lectin regulated the formation of aerial Mycelium and fruiting body in Flammulina velutipes [J/OL]. Int. J. Mol. Sci., 2016, 17(12): E1884[2024-07-25]. . |
12 | TAO Y, CHEN R, YAN J, et al.. A hydrophobin gene, Hyd9, plays an important role in the formation of aerial hyphae and primordia in Flammulina filiformis [J]. Gene, 2019, 706: 84-90. |
13 | 沈慧敏,李超,高利,等.原生质体法介导真菌遗传转化的研究进展[J].植物保护,2017,43(2):25-28, 42. |
SHEN H M, LI C, GAO L, et al.. Research progress in transformation of fungi mediated by protoplasts[J]. Plant Prot., 2017, 43(2): 25-28, 42. | |
14 | BOURRAS S, ROUXEL T, MEYER M. Gene transfer: how a plant pathogen hacks the nuclei of plant and nonplant organisms[J]. Phytopathology, 2015, 105(10): 1288-1301. |
15 | 查丽燕,周伟坚,王越,等.根癌农杆菌介导的食用菌遗传转化研究进展[J].食用菌学报,2020,27(1):105-118. |
ZHA L Y, ZHOU W J, WANG Y, et al.. Research progress on Agrobacterium-mediated transformation of edible fungi[J]. Acta Edulis Fungi, 2020, 27(1): 105-118. | |
16 | 孙运奇,张津京,冯志勇,等.根癌农杆菌介导的食用菌转化研究[J].食用菌学报,2014,21(1):69-75. |
SUN Y Q, ZHANG J J, FENG Z Y, et al.. Agrobacterium-mediated transformation of edible fungi[J]. Acta Edulis Fungi, 2014, 21(1): 69-75. | |
17 | 胡懋,曾杨璇,苗华彪,等.根癌农杆菌介导真菌遗传转化的研究及应用[J].微生物学通报,2021,48(11):4344-4363. |
HU M, ZENG Y X, MIAO H B, et al.. Research and application of Agrobacterium tumefaciens-mediated fungal genetic transformation[J]. Microbiol. China, 2021, 48(11): 4344-4363. | |
18 | 刘建雨,徐珍,张丹,等.农杆菌介导法转化金针菇不同受体的效率比较[J].食用菌学报,2015,22(3):7-12. |
LIU J Y, XU Z, ZHANG D, et al.. Efficiency of Flammulina velutipes transformation by Agrobacterium tumefaciens-mediated transformation using different receptors[J]. Acta Edulis Fungi, 2015, 22(3): 7-12. | |
19 | OKAMOTO T, YAMADA M, SEKIYA S, et al.. Agrobacterium tumefaciens-mediated transformation of the vegetative dikaryotic Mycelium of the cultivated mushroom Flammulina velutipes [J]. Biosci. Biotechnol. Biochem., 2010, 74(11): 2327-2329. |
20 | CHO J H, LEE S E, CHANG W B, et al.. Agrobacterium-mediated transformation of the winter mushroom, Flammulina velutipes [J]. Mycobiology, 2006, 34(2): 104-107. |
21 | YAN L, XU R, ZHOU Y, et al.. Effects of medium composition and genetic background on Agrobacterium-mediated transformation efficiency of Lentinula edodes [J/OL]. Genes, 2019, 10(6): E467[2024-07-25]. . |
22 | 乔燕楠,林星雨,高雅,等.根癌农杆菌介导的双孢蘑菇转基因体系的建立[J].食用菌学报,2021,28(1):48-54. |
QIAO Y N, LIN X Y, GAO Y, et al.. Establishment of A high-efficiency Agrobacterium-mediated transformation system in Agaricus bisporus [J]. Acta Edulis Fungi, 2021, 28(1): 48-54. | |
23 | ZHANG J J, SHI L, CHEN H, et al. An efficient Agrobacterium- mediated transformation method for the edible mushroom[J/OL]. Microbiol. Res., 2014, 169(9-10):741-748. |
24 | LEI M, WU X, ZHANG J, et al.. Establishment of an efficient transformation system for Pleurotus ostreatus [J/OL]. World J. Microbiol. Biotechnol., 2017, 33(12): 214[2024-07-25]. . |
25 | 陈焕,范天宁,白玉东,等. 金针菇中免疫调节蛋白编码基因FIP-fve 的功能[J]. 华中农业大学学报, 2023, 42(2):131-138. |
CHEN H, FAN T Y, BAI Y D, et al.. Native bio-function of FIP-fve towards Flammulina filiformis [J]. Huazhong Agric.Univ., 2023, 42(2):131-138. | |
26 | SEKIYA S, YAMADA M, SHIBATA K, et al.. Characterization of a gene coding for a putative adenosine deaminase-related growth factor by RNA interference in the Basidiomycete Flammulina velutipes [J]. J. Biosci. Bioeng., 2013, 115(4): 360-365. |
27 | LIU Z, DENG B, YUAN H, et al.. Transcription factor FfMYB15 regulates the expression of cellulase gene FfCEL6B during mycelial growth of Flammulina filiformis [J/OL]. Microb. Cell Fact., 2022, 21(1): 216[2024-07-25]. . |
28 | DU M, XIE Y, WANG M, et al.. Ffga1 protein is essential for regulating vegetative growth, cell wall integrity, and protection against stress in Flammunina filiformis [J/OL]. J. Fungi Basel Switz., 2022, 8(4): 401[2024-07-25]. . |
29 | LIU Y, MA X, LONG Y, et al.. Effects of β- 1, 6-glucan synthase gene (FfGS6) overexpression on stress response and fruit body development in Flammulina filiformis[J/OL]. Genes, 2022, 13(10): 1753[2024-07-25]. . |
30 | WU T, HU C, XIE B, et al.. A single transcription factor (PDD1) determines development and yield of winter mushroom (Flammulina velutipes)[J/OL]. Appl. Environ. Microbiol., 2019, 85(24): e01735-19[2025-10-10]. . |
31 | LI J, SHAO Y, YANG Y, et al.. The chromatin modifier protein FfJMHY plays an important role in regulating the rate of mycelial growth and stipe elongation in Flammulina filiformis [J/OL]. J. Fungi Basel Switz., 2022, 8(5): 477[2024-07-25]. . |
32 | LYU X, JIANG S, WANG L, et al.. The Fvclp1 gene regulates mycelial growth and fruiting body development in edible mushroom Flammulina velutipes [J]. Arch. Microbiol., 2021, 203(9): 5373-5380. |
33 | LIU F, CHOU T, WANG W, et al.. Homeodomain 1 genes of the different HD subloci of Flammulina velutipes can activate the HD pathway and are involved in mating, clamp cell formation, and upregulation of FvClp1[J]. J. Agric. Food Chem., 2024, 72(17): 9915-9922. |
34 | WU T, ZHANG Z, HU C, et al.. A WD40 protein encoding gene Fvcpc2 positively regulates mushroom development and yield in Flammulina velutipes [J/OL]. Front. Microbiol., 2020, 11: 498[2024-07-25]. . |
35 | 施乐乐, PEER A F,郭丽,等.农杆菌介导一个内源HMG-box转录因子fvhom1转化金针菇[J].基因组学与应用生物学,2014,33(6):1268-1274. |
SHI L L, PEER A F, GUO L, et al.. Agrobacterium-mediated transformation of an endogenous HMG-box transcription factor fvhom1 in Flammulina velutipes [J]. Genom. Appl. Biol., 2014, 33(6): 1268-1274. | |
36 | MENG L, LYU X, SHI L, et al.. The transcription factor FvHmg1 negatively regulates fruiting body development in winter mushroom Flammulina velutipes [J/OL]. Gene, 2021, 785: 145618[2024-07-25]. . |
37 | WU T, HU C, XIE B, et al.. A putative transcription factor LFC1 negatively regulates development and yield of winter mushroom[J]. Appl. Microbiol. Biotechnol., 2020, 104(13): 5827-5844. |
38 | YAN J, CHEKANOVA J, LIU Y, et al.. Reactive oxygen species distribution involved in stipe gradient elongation in the mushroom Flammulina filiformis [J/OL]. Cells, 2022, 11(12): 1896[2024-07-25]. . |
39 | BURNS C, LEACH K M, ELLIOTT T J, et al.. Evaluation of Agrobacterium-mediated transformation of agricus bisporus using a range of promoters linked to hygromycin resistance[J]. Mol. Biotechnol., 2006, 32(2): 129-138. |
40 | CHEN X, STONE M, SCHLAGNHAUFER C, et al.. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus [J]. Cancers, 2000, 66(10): 4510-4513. |
41 | KUO C Y, CHOU S Y, HSEU R S, et al.. Heterologous expression of EGFP in enoki mushroom Flammulina velutipes [J]. Bot. Stud., 2010, 51:303-309. |
42 | AL-SALIHI S A A, SCOTT T A, BAILEY A M, et al.. Improved vectors for Agrobacterium mediated genetic manipulation of Hypholoma spp. and other homobasidiomycetes[J]. J. Microbiol. Meth., 2017, 142: 4-9. |
43 | BURNS C, GREGORY K E, KIRBY M, et al.. Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns[J]. Fungal Genet. Biol., 2005, 42(3): 191-199. |
44 | WINANS S C. Two-way chemical signaling in Agrobacterium-plant interactions[J]. PLoS One, 1992, 56(1): 12-31. |
45 | PCOMBIER J, MELAYAH D, RAFFIER C, et al.. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum [J]. FEMS Microbiol. Lett., 2003, 220(1): 141-148. |
46 | SHI L, FANG X, LI M, et al.. Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum [J]. World J. Microbiol. Biotechnol., 2012, 28(1): 283-291. |
47 | 刘建辉,张俊玲,李亮,等. 金针菇tps1基因序列分析及不同温度下tps1、tps2基因定量表达研究[J].食品工业科技, 2015, 36(16): 173-182. |
LIU J H, ZHANG J L, LI L, et al.. Sequence analysis of tps1 and relative expression of tps1 and tps2 under different temperature in Flammulina velutipes [J]. Sci. Technol. Food Ind., 2015, 36(16):173-182. | |
48 | 刘建雨,刘建辉,徐珍,等.金针菇异戊烯基焦磷酸异构酶基因的克隆及表达分析[J].食用菌学报,2016,23(3):10-14. |
LIU J Y, LIU J H, XU Z, et al.. Cloning and expression of an isopentenyl diphosphate isomerase gene from Flammulina velutipes [J]. Acta Edulis Fungi, 2016, 23(3): 10-14. | |
49 | 刘建雨,李婧霆,陆欢,等.基于全基因组的金针菇光受体基因鉴定及表达分析[J].菌物学报,2023,42(3):759-769. |
LIU J Y, LI J T, LU H, et al.. Genome-wide characterization and expression analysis of the photoreceptors encoded in Flammulina filiformis [J]. Mycosystema, 2023, 42(3): 759-769. | |
50 | 许畅,罗兴超,张豪,等.金针菇光受体隐花色素Ffcry基因的鉴定及其表达模式[J].菌物学报,2022,41(6):962-970. |
XU C, LUO X C, ZHANG H, et al.. Identification and expression pattern of photoreceptor cryptochrome Ffcry gene in Flammulina filiformis [J]. Mycosystema, 2022, 41(6): 962-970. | |
51 | YAMADA M, SAKURABA S, SHIBATA K, et al.. Cloning and characterization of a gene coding for a hydrophobin, Fv-hyd1, specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes [J]. Appl. Microbiol. Biotechnol., 2005, 67(2): 240-246. |
52 | YUN Y H, KOO J S, KIM S H, et al.. Cloning and expression analysis of phenylalanine ammonia-lyase gene in the Mycelium and fruit body of the edible mushroom Flammulina velutipes [J]. Mycobiology, 2015, 43(3): 327-332. |
53 | KIM H I, LEE C S, JPARK Y. Further characterization of hydrophobin genes in genome of Flammulina velutipes [J]. Mycoscience, 2016, 57(5): 320-325. |
54 | HUANG Q H, HAN X, MUKHTAR I, et al. Identification and expression patterns of fvexpl1, an expansin-like protein-encoding gene, suggest an auxiliary role in the stipe morphogenesis of Flammulina velutipes [J]. J. Microbiol. Biotechnol., 2018, 28(4):622-629. |
55 | 陶永新,段静怡,李依宁,等.金针菇L-赖氨酸合成通路基因鉴定及对不同光质的响应表达[J].食用菌学报,2018,25(4):1-8. |
TAO Y X, DUAN J Y, LI Y N, et al.. Identification of genes in Flammulina filiformis L-lysine biosynthesis pathway and their expression in response to light conditions[J]. Acta Edulis Fungi, 2018, 25(4): 1-8. | |
56 | 刘建雨,王瑞娟,张丹,等.基于金针菇全基因组的赖氨酸合成途径关键酶分析[J].微生物学通报,2016,43(10):2225-2233. |
LIU J Y, WANG R J, ZHANG D, et al.. Analysis of genes related to lysine biosynthesis based on whole genome of Flammulina velutipes [J]. Microbiol. China, 2016, 43(10): 2225-2233. | |
57 | LIU Q, MENG G, WANG M, et al.. Safe-harbor-targeted CRISPR/Cas9 system and Cmhyd1 overexpression enhances disease resistance in Cordyceps militaris [J]. J. Agric. Food Chem., 2023, 71(41): 15249-15260. |
58 | 王晨.香菇T-DNA插入突变体库构建和色氨酸合酶基因功能分析[D].武汉:华中农业大学,2021. |
59 | WALTZ E. Gene-edited CRISPR mushroom escapes US regulation[J/OL]. Nature, 2016, 532: 293[2024-07-25]. . |
60 | 刘建雨,刘建辉,张丹,等.农杆菌介导的Cas9基因转化金针菇的研究[J].食用菌学报,2017,24(3):25-29. |
LIU J Y, LIU J H, ZHANG D, et al.. Agrobacterium-mediated gene transformation of Cas9 into Flammulina velutipes [J]. Acta Edulis Fungi, 2017, 24(3): 25-29. | |
61 | 林金德,杨雪琴,魏韬,等.金针菇G蛋白偶联受体基因的CRISPR/Cas9基因组编辑载体构建及转化研究[J].菌物学报,2019,38(3):349-361. |
LIN J D, YANG X Q, WEI T, et al.. Construction and transformation of CRISPR/Cas9 genome editing vector of Flammulina filiformis G protein-coupled receptor gene[J]. Mycosystema, 2019, 38(3): 349-361. |
[1] | 邹凯. 植物毛状根研究及应用[J]. 生物技术进展, 2024, 14(3): 341-348. |
[2] | 李文辉, 王逸璇, 贠建民, 王彪, 郭更新, 屈玉玲. 马铃薯淀粉渣对金针菇生长特性及产量的影响[J]. 生物技术进展, 2023, 13(3): 435-440. |
[3] | 薛琴琴,,韩贝贝,吴雪晴,李沛,李莹莹,,吴庆钰. 纳米材料在农作物领域的应用及展望[J]. 生物技术进展, 2020, 10(6): 655-660. |
[4] | 刘宏,贠建民,毛永强,何田田,毕阳. 两种精油熏蒸处理对金针菇贮藏品质的影响[J]. 生物技术进展, 2020, 10(2): 190-197. |
[5] | 费凡,冯伟伟,茆广华,张伟杰,丁阳阳,赵婷,吴向阳. 金针菇菌渣和醋渣固态发酵的工艺研究[J]. 生物技术进展, 2019, 9(4): 422-429. |
[6] | 胡海英,吴晓玲. 银柴胡离体培养与毛状根诱导技术初步研究[J]. 生物技术进展, 2015, 5(6): 436-440. |
[7] | 刘大普, 杨凤萍, 张晓东. 麦类作物小孢子培养与遗传转化研究进展[J]. 生物技术进展, 2012, 2(6): 385-390. |
[8] | 姚冉,石美丽,潘沈元,沈桂芳,张志芳. 农杆菌介导的植物遗传转化研究进展[J]. 生物技术进展, 2011, 1(4): 260-265. |
[9] | 史庆玲. 玉米转基因方法研究进展[J]. 生物技术进展, 2011, 1(3): 178-183. |
[10] | 刘亚,李敬娜,任雯,李翔. 植物遗传转化表达载体研究进展[J]. 生物技术进展, 2011, 1(1): 14-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部